Zebrafish: modeling senescence in the context of disease and regeneration
DOI:
https://doi.org/10.35366/107513Keywords:
senescence, disease modeling, zebrafish, cancer, neurodegeneration, heart regenerationAbstract
Cellular senescence is a natural biological process characterized by permanent and irreversible
state of cellular arrest, mitochondrial alteration, and secretion of senescence-associated phenotype
(SASP) components. Several factors can induce senescence, including DNA damage,
oxidative stress, and neuroinflammation, these factors have also been linked to several disorders
such as Alzheimer’s, Parkinson’s, cancer, among others. The increased presence of senescent cells
among different diseases suggests the importance of senescence in the pathophysiology of a great
number of disorders, thus the need for different models that could help deepen our understanding of
the molecular mechanisms of senescence, identify possible targets for therapeutic interventions, and
arising challenges. In addition to in vitro models, most senescent research has come from classical
model species, i.e., mouse and rat. Senescence is highly
conserved; different studies have shown that senescent cells seem to accumulate in all vertebrate
organisms and that several associated genes show similar expression patterns, opening the door to
new vertebrate models. The zebrafish has become a strong emerging model for different diseases,
such as cancer, inflammation, neurodegeneration, among others; it shares multiple advantages with
classical models, such as well-established genome editing tools and a fully sequenced genome.
Additionally, zebrafish exhibit multiple advantages, including high fecundity for robust statistical
analysis, external fertilization, and optical transparency that enables powerful imaging capabilities
and makes it a versatile model for experimental manipulation and structural visualization. Here we
present the zebrafish as a model that can contribute significantly to our understanding of the processes
involved in senescence and age-related diseases.
References
Hayflick L, Moorhead PS. The serial cultivation of human
diploid cell strains. Exp Cell Res. 1961; 25: 585-621.
Hernandez-Segura A, Nehme J, Demaria M. Hallmarks
of cellular senescence. Trends Cell Biol. 2018; 28 (6):
-453.
He S, Sharpless NE. Senescence in health and disease.
Cell. 2017; 169 (6): 1000-1011.
Caprioli J. Glaucoma: a disease of early cellular
senescence. Invest Ophthalmol Vis Sci. 2013; 54 (14):
ORSF60-ORSF67.
Narasimhan A, Flores RR, Robbins PD, Niedernhofer
LJ. Role of cellular senescence in type II diabetes.
Endocrinology. 2021; 162 (10): bqab136.
Barth E, Srivastava A, Stojiljkovic M, Frahm C, Axer
H, Witte OW et al. Conserved aging-related signatures
of senescence and inflammation in different tissues
and species. Aging (Albany NY). 2019; 11 (19): 8556-
Ota S, Kawahara A. Zebrafish: a model vertebrate
suitable for the analysis of human genetic disorders.
Congenit Anom (Kyoto). 2014; 54 (1): 8-11.
Varga M. The doctor of delayed publications: the
remarkable life of George Streisinger (1927-1984).
Zebrafish. 2018; 15 (3): 314-319.
Patton EE, Zon LI, Langenau DM. Zebrafish disease
models in drug discovery: from preclinical modelling
to clinical trials. Nat Rev Drug Discov. 2021; 20 (8):
-628.
Howe K, Clark MD, Torroja CF, Torrance J, Berthelot
C, Muffato M et al. The zebrafish reference genome
sequence and its relationship to the human genome.
Nature. 2013; 496 (7446): 498-503.
Hruscha A, Krawitz P, Rechenberg A, Heinrich V, Hecht
J, Haass C et al. Efficient CRISPR/Cas9 genome editing
with low off-target effects in zebrafish. Development.
; 140 (24): 4982-4987.
Huang P, Zhu Z, Lin S, Zhang B. Reverse genetic
approaches in zebrafish. J Genet Genomics. 2012; 39
(9): 421-433.
Childs BG, Baker DJ, Wijshake T, Conover CA, Campisi
J, van Deursen JM. Senescent intimal foam cells are
deleterious at all stages of atherosclerosis. Science.
; 354 (6311): 472-477.
Gorgoulis V, Adams PD, Alimonti A, Bennett DC, Bischof
O, Bishop C et al. Cellular senescence: defining a path
forward. Cell. 2019; 179 (4): 813-827.
Minamino T, Orimo M, Shimizu I, Kunieda T, Yokoyama
M, Ito T et al. A crucial role for adipose tissue p53 in the
regulation of insulin resistance. Nat Med. 2009; 15 (9):
-1087.
Niccoli T, Partridge L. Ageing as a risk factor for disease.
Curr Biol. 2012; 22 (17): R741-R752.
Lujambio A, Akkari L, Simon J, Grace D, Tschaharganeh
DF, Bolden JE et al. Non-cell-autonomous tumor
suppression by p53. Cell. 2013; 153 (2): 449-460.
Acosta JC, O’Loghlen A, Banito A, Guijarro MV, Augert
A, Raguz S et al. Chemokine signaling via the CXCR2
receptor reinforces senescence. Cell. 2008; 133 (6):
-1018.
Krizhanovsky V, Yon M, Dickins RA, Hearn S, Simon J,
Miething C et al. Senescence of activated stellate cells
limits liver fibrosis. Cell. 2008; 134 (4): 657-667.
Faget DV, Ren Q, Stewart SA. Unmasking senescence:
context-dependent effects of SASP in cancer. Nat Rev
Cancer. 2019; 19 (8): 439-453.
Mongiardi MP, Pellegrini M, Pallini R, Levi A, Falchetti
ML. Cancer response to therapy-induced senescence:
a matter of dose and timing. Cancers (Basel). 2021; 13
(3): 484.
Yasuda T, Baba H, Ishimoto T. Cellular senescence in
the tumor microenvironment and context-specific cancer
treatment strategies. FEBS J. 2021.
Zampedri C, Martinez-Flores WA, Melendez-Zajgla J.
The use of zebrafish xenotransplant assays to analyze
the role of lncRNAs in breast cancer. Front Oncol. 2021;
: 687594.
Britto DD, Wyroba B, Chen W, Lockwood RA, Tran
KB, Shepherd PR et al. Macrophages enhance Vegfadriven angiogenesis in an embryonic zebrafish tumour
xenograft model. Dis Model Mech. 2018; 11 (12):
dmm035998.
Hanna SJ, McCoy-Simandle K, Leung E, Genna A,
Condeelis J, Cox D. Tunneling nanotubes, a novel
mode of tumor cell-macrophage communication
in tumor cell invasion. J Cell Sci. 2019; 132 (3):
jcs223321.
Varanda AB, Martins-Logrado A, Ferreira MG, Fior
R. Zebrafish xenografts unveil sensitivity to Olaparib
beyond BRCA status. Cancers (Basel). 2020; 12 (7):
Jurk D, Wang C, Miwa S, Maddick M, Korolchuk V,
Tsolou A et al. Postmitotic neurons develop a p21-
dependent senescence-like phenotype driven by a DNA
damage response. Aging Cell. 2012; 11 (6): 996-1004.
Dehkordi SK, Walker J, Sah E, Bennett E, Atrian F, Frost
B et al. Profiling senescent cells in human brains reveals
neurons with CDKN2D/p19 and tau neuropathology. Nat
Aging. 2021; 1 (12): 1107-1116.
Zhang C, Zhu Q, Hua T. Aging of cerebellar Purkinje
cells. Cell Tissue Res. 2010; 341 (3): 341-347.
Hu Y, Fryatt GL, Ghorbani M, Obst J, Menassa DA,
Martin-Estebane M et al. Replicative senescence
dictates the emergence of disease-associated microglia
and contributes to Abeta pathology. Cell Rep. 2021; 35
(10): 109228.
Shahidehpour RK, Higdon RE, Crawford NG, Neltner
JH, Ighodaro ET, Patel E et al. Dystrophic microglia
are associated with neurodegenerative disease and
not healthy aging in the human brain. Neurobiol Aging.
; 99: 19-27.
Hu Y, Huang Y, Xing S, Chen C, Shen D, Chen J. Abeta
promotes CD38 expression in senescent microglia in
Alzheimer’s disease. Biol Res. 2022; 55 (1): 10.
Ungerleider K, Beck J, Lissa D, Turnquist C, Horikawa
I, Harris BT et al. Astrocyte senescence and SASP in
neurodegeneration: tau joins the loop. Cell Cycle. 2021;
(8): 752-764.
Limbad C, Oron TR, Alimirah F, Davalos AR, Tracy TE,
Gan L et al. Astrocyte senescence promotes glutamate
toxicity in cortical neurons. PLoS One. 2020; 15 (1):
e0227887.
Capilla-Gonzalez V, Cebrian-Silla A, GuerreroCazares H, Garcia-Verdugo JM, Quinones-Hinojosa
A. Age-related changes in astrocytic and ependymal
cells of the subventricular zone. Glia. 2014; 62 (5):
-803.
Harkins D, Cooper HM, Piper M. The role of lipids in
ependymal development and the modulation of adult
neural stem cell function during aging and disease.
Semin Cell Dev Biol. 2021; 112: 61-68.
Rivellini C, Porrello E, Dina G, Mrakic-Sposta
S, Vezzoli A, Bacigaluppi M et al. JAB1 deletion
in oligodendrocytes causes senescence-induced
inflammation and neurodegeneration in mice. J Clin
Invest. 2022; 132 (3): e145071.
Tanaka J, Okuma Y, Tomobe K, Nomura Y. The
age-related degeneration of oligodendrocytes in the
hippocampus of the senescence-accelerated mouse
(SAM) P8: a quantitative immunohistochemical study.
Biol Pharm Bull. 2005; 28 (4): 615-618.
Zhang J, Gao F, Ma Y, Xue T, Shen Y. Identification of
early-onset photoreceptor degeneration in transgenic
mouse models of Alzheimer’s disease. iScience. 2021;
(11): 103327.
Rocha LR, Nguyen Huu VA, Palomino La Torre C,
Xu Q, Jabari M, Krawczyk M et al. Early removal of
senescent cells protects retinal ganglion cells loss in
experimental ocular hypertension. Aging Cell. 2020;
(2): e13089.
Kohlmeyer JL, Kaemmer CA, Umesalma S, Gourronc
FA, Klingelhutz AJ, Quelle DE. RABL6A regulates
Schwann cell senescence in an RB1-dependent
manner. Int J Mol Sci. 2021; 22 (10): 5367.
Parker MH. The altered fate of aging satellite cells is
determined by signaling and epigenetic changes. Front
Genet. 2015; 6: 59.
Sreekumar PG, Hinton DR, Kannan R. The emerging
role of senescence in ocular disease. Oxid Med Cell
Longev. 2020; 2020: 2583601.
Rouillard ME, Hu J, Sutter PA, Kim HW, Huang JK,
Crocker SJ. The cellular senescence factor extracellular
HMGB1 directly inhibits oligodendrocyte progenitor cell
differentiation and impairs CNS remyelination. Front Cell
Neurosci. 2022; 16: 833186.
Olivieri F, Prattichizzo F, Grillari J, Balistreri CR. Cellular
senescence and inflammaging in age-related diseases.
Mediators Inflamm. 2018; 2018: 9076485.
Mogi M, Harada M, Kondo T, Riederer P, Inagaki
H, Minami M et al. Interleukin-1 beta, interleukin-6,
epidermal growth factor and transforming growth
factor-alpha are elevated in the brain from parkinsonian
patients. Neurosci Lett. 1994; 180 (2): 147-150.
Nicaise AM, Wagstaff LJ, Willis CM, Paisie C, Chandok
H, Robson P et al. Cellular senescence in progenitor
cells contributes to diminished remyelination potential
in progressive multiple sclerosis. Proc Natl Acad Sci U
S A. 2019; 116 (18): 9030-9039.
Schmidt R, Strahle U, Scholpp S. Neurogenesis in
zebrafish - from embryo to adult. Neural Dev. 2013; 8: 3.
Panula P, Chen YC, Priyadarshini M, Kudo H, Semenova
S, Sundvik M et al. The comparative neuroanatomy and
neurochemistry of zebrafish CNS systems of relevance
to human neuropsychiatric diseases. Neurobiol Dis.
; 40 (1): 46-57.
Guo S. Using zebrafish to assess the impact of drugs
on neural development and function. Expert Opin Drug
Discov. 2009; 4 (7): 715-726.
Panula P, Sallinen V, Sundvik M, Kolehmainen J, Torkko V,
Tiittula A et al. Modulatory neurotransmitter systems and
behavior: towards zebrafish models of neurodegenerative
diseases. Zebrafish. 2006; 3 (2): 235-247.
Blader P, Strahle U. Zebrafish developmental genetics
and central nervous system development. Hum Mol
Genet. 2000; 9 (6): 945-951.
Cassar S, Adatto I, Freeman JL, Gamse JT, Iturria I,
Lawrence C et al. Use of zebrafish in drug discovery
toxicology. Chem Res Toxicol. 2020; 33 (1): 95-118.
Kim K, Choe HK. Role of hypothalamus in aging and
its underlying cellular mechanisms. Mech Ageing Dev.
; 177: 74-79.
Zhang Y, Kim MS, Jia B, Yan J, Zuniga-Hertz JP, Han
C et al. Hypothalamic stem cells control ageing speed
partly through exosomal miRNAs. Nature. 2017; 548
(7665): 52-57.
Zambusi A, Pelin Burhan O, Di Giaimo R, Schmid B,
Ninkovic J. Granulins regulate aging kinetics in the adult
zebrafish telencephalon. Cells. 2020; 9 (2): 350.
Suzuki DG, Perez-Fernandez J, Wibble T, Kardamakis
AA, Grillner S. The role of the optic tectum for visually
evoked orienting and evasive movements. Proc Natl
Acad Sci U S A. 2019; 116 (30): 15272-15281.
Thiele TR, Donovan JC, Baier H. Descending control
of swim posture by a midbrain nucleus in zebrafish.
Neuron. 2014; 83 (3): 679-691.
Heap LA, Goh CC, Kassahn KS, Scott EK. Cerebellar
output in zebrafish: an analysis of spatial patterns and
topography in eurydendroid cell projections. Front
Neural Circuits. 2013; 7: 53.
Liang KJ, Carlson ES. Resistance, vulnerability and
resilience: A review of the cognitive cerebellum in aging
and neurodegenerative diseases. Neurobiol Learn Mem.
; 170: 106981.
Bernard JA, Seidler RD. Moving forward: age effects on
the cerebellum underlie cognitive and motor declines.
Neurosci Biobehav Rev. 2014; 42: 193-207.
Houser SR, Margulies KB, Murphy AM, Spinale FG,
Francis GS, Prabhu SD et al. Animal models of heart
failure: a scientific statement from the American Heart
Association. Circ Res. 2012; 111 (1): 131-150.
Senyo SE, Lee RT, Kuhn B. Cardiac regeneration
based on mechanisms of cardiomyocyte proliferation
and differentiation. Stem Cell Res. 2014; 13 (3 Pt B):
-541.
Poss KD, Wilson LG, Keating MT. Heart regeneration
in zebrafish. Science. 2002; 298 (5601): 2188-2190.
Mizoguchi T, Verkade H, Heath JK, Kuroiwa A, Kikuchi
Y. Sdf1/Cxcr4 signaling controls the dorsal migration
of endodermal cells during zebrafish gastrulation.
Development. 2008; 135 (15): 2521-2529.
Itou J, Oishi I, Kawakami H, Glass TJ, Richter J, Johnson
A et al. Migration of cardiomyocytes is essential for heart
regeneration in zebrafish. Development. 2012; 139 (22):
-4142.
Jing Y, Ren Y, Witzel HR, Dobreva G. A BMP4-p38
MAPK signaling axis controls ISL1 protein stability and
activity during cardiogenesis. Stem Cell Reports. 2021;
(8): 1894-1905.
Gonzalez-Rosa JM, Peralta M, Mercader N. Panepicardial lineage tracing reveals that epicardium
derived cells give rise to myofibroblasts and perivascular
cells during zebrafish heart regeneration. Dev Biol. 2012;
(2): 173-186.
Sanz-Morejon A, Garcia-Redondo AB, Reuter H,
Marques IJ, Bates T, Galardi-Castilla M et al. Wilms tumor
b expression defines a pro-regenerative macrophage
subtype and is required for organ regeneration in the
zebrafish. Cell Rep. 2019; 28 (5): 1296-1306.e6.
Marques IJ, Ernst A, Arora P, Vianin A, Hetke T,
Sanz-Morejon A et al. Wt1 transcription factor impairs
cardiomyocyte specification and drives a phenotypic
switch from myocardium to epicardium. Development.
; 149 (6): dev200375.
Aisagbonhi O, Rai M, Ryzhov S, Atria N, Feoktistov I,
Hatzopoulos AK. Experimental myocardial infarction
triggers canonical Wnt signaling and endothelial-tomesenchymal transition. Dis Model Mech. 2011; 4 (4):
-483.
Bastakoty D, Saraswati S, Joshi P, Atkinson J,
Feoktistov I, Liu J et al. Temporary, systemic inhibition of
the WNT/beta-catenin pathway promotes regenerative
cardiac repair following myocardial infarct. Cell Stem
Cells Regen Med. 2016; 2 (2): 10.16966/2472-6990.111.
Bertozzi A, Wu CC, Hans S, Brand M, Weidinger G.
Wnt/beta-catenin signaling acts cell-autonomously to
promote cardiomyocyte regeneration in the zebrafish
heart. Dev Biol. 2022; 481: 226-237.
Hu B, Lelek S, Spanjaard B, El-Sammak H, Simoes
MG, Mintcheva J et al. Origin and function of activated
fibroblast states during zebrafish heart regeneration.
Nat Genet. 2022; 54 (8): 1227-1237.
Kishi S, Uchiyama J, Baughman AM, Goto T, Lin
MC, Tsai SB. The zebrafish as a vertebrate model of
functional aging and very gradual senescence. Exp
Gerontol. 2003; 38 (7): 777-786.
Reuter H, Perner B, Wahl F, Rohde L, Koch P, Groth
M et al. Aging activates the immune system and alters
the regenerative capacity in the zebrafish heart. Cells.
; 11 (3): 345
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra
This work is licensed under a Creative Commons Attribution 4.0 International License.
© Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra under a Creative Commons Attribution 4.0 International (CC BY 4.0) license which allows to reproduce and modify the content if appropiate recognition to the original source is given.