The role of non-coding RNAs in the pathogenesis of myotonic dystrophy type 1
DOI:
https://doi.org/10.35366/103941Keywords:
Myotonic dystrophy, ncRNA, miRNAs, lncRNAs, circRNAAbstract
Myotonic dystrophy type 1 (DM1) is the most common muscular dystrophy in adults with a prevalence
of 1/8,000 worldwide. DM1 is a multisystem disorder with a complex pathophysiology. Spliciopathy is
the mechanism with the greatest impact on the pathogenesis and is also the most studied. However,
other mechanisms like deregulation of non-coding RNAs (ncRNAs) have been described that contribute
to the pathogenesis. ncRNAs, particularly miRNAs, participate in the development, differentiation,
and regeneration of muscle tissue in DM1. The potential role of some miRNAs as DM1 biomarkers
has been revealed from patient’s serum studies. More recent studies, described antisense DM1 RNA,
now classified as a lncRNA, with a potential role in the formation of siRNAs, chromatin modifying,
and RAN translation mechanisms. Nonetheless, lncRNA have not been described in DM1, and it
would therefore be interesting to investigate the role they play in this disease. It appears that ncRNAs
play an important role in DM1, adding new elements to the previously described mechanisms, which
improve our understanding of this complex disease, leaving still a lot to be discovered
References
Pearson CE, Nichol Edamura K, Cleary JD. Repeat
instability: mechanisms of dynamic mutations. Nat Rev
Genet. 2005; 6 (10): 729-742.
de León MB, Cisneros B. Myotonic dystrophy 1 in the
nervous system: from the clinic to molecular mechanisms.
J Neurosci Res. 2008; 86 (1): 18-26.
Udd B, Krahe R. The myotonic dystrophies: molecular,
clinical, and therapeutic challenges. Lancet Neurol. 2012;
(10): 891-905.
Day JW, Ranum LP. RNA pathogenesis of the myotonic
dystrophies. Neuromuscul Disord. 2005; 15 (1): 5-16. doi:
1016/j.nmd.2004.09.012.
Cho DH, Tapscott SJ. Myotonic dystrophy: emerging
mechanisms for DM1 and DM2. Biochim Biophys
Acta. 2007; 1772 (2): 195-204. doi: 10.1016/j.
bbadis.2006.05.013.
Magaña JJ, Leyva-García N, Cisneros B. Pathogenesis
of myotonic dystrophy type 1. Gac Med Mex. 2009; 145
(4): 331-337.
Lin X, Miller JW, Mankodi A, Kanadia RN, Yuan Y, Moxley
RT et al. Failure of MBNL1-dependent post-natal splicing
transitions in myotonic dystrophy. Hum Mol Genet. 2006;
(13): 2087-2097. doi: 10.1093/hmg/ddl132.
Mankodi A, Takahashi MP, Jiang H, Beck CL, Bowers
WJ, Moxley RT et al. Expanded CUG repeats trigger
aberrant splicing of ClC-1 chloride channel pre-mRNA
and hyperexcitability of skeletal muscle in myotonic
dystrophy. Mol Cell. 2002; 10 (1): 35-44.
Du H, Cline MS, Osborne RJ, Tuttle DL, Clark TA,
Donohue JP et al. Aberrant alternative splicing and
extracellular matrix gene expression in mouse models
of myotonic dystrophy. Nat Struct Mol Biol. 2010; 17 (2):
-193. doi: 10.1038/nsmb.1720.
Batra R, Charizanis K, Manchanda M, Mohan A, Li
M, Finn DJ et al. Loss of MBNL leads to disruption of
developmentally regulated alternative polyadenylation in
RNA-mediated disease. Mol Cell. 2014; 56 (2): 311-322.
doi: 10.1016/j.molcel.2014.08.027.
Goodwin M, Mohan A, Batra R, Lee KY, Charizanis K,
Fernández Gómez FJ et al. MBNL sequestration by toxic
RNAs and RNA misprocessing in the myotonic dystrophy
brain. Cell Rep. 2015; 12 (7): 1159-1168. doi: 10.1016/j.
celrep.2015.07.029.
Kalsotra A, Singh RK, Gurha P, Ward AJ, Creighton CJ,
Cooper TA. The Mef2 transcription network is disrupted
in myotonic dystrophy heart tissue, dramatically altering
miRNA and mRNA expression. Cell Rep. 2014; 6 (2):
-345. doi: 10.1016/j.celrep.2013.12.025.
Fernández-Costa JM, Garcia-Lopez A, Zuñiga S,
Fernandez-Pedrosa V, Felipo-Benavent A, Mata M et
al. Expanded CTG repeats trigger miRNA alterations
in Drosophila that are conserved in myotonic dystrophy
type 1 patients. Hum Mol Genet. 2013; 22 (4): 704-716.
doi: 10.1093/hmg/dds478.
Rau F, Freyermuth F, Fugier C, Villemin JP, Fischer
MC, Jost B et al. Misregulation of miR-1 processing is
associated with heart defects in myotonic dystrophy.
Nat Struct Mol Biol. 2011; 18 (7): 840-845. doi: 10.1038/
nsmb.2067.
Moseley ML, Zu T, Ikeda Y, Gao W, Mosemiller AK,
Daughters RS et al. Bidirectional expression of CUG
and CAG expansion transcripts and intranuclear
polyglutamine inclusions in spinocerebellar ataxia type 8.
Nat Genet. 2006; 38 (7): 758-769. doi: 10.1038/ng1827.
Cho DH, Thienes CP, Mahoney SE, Analau E,
Filippova GN, Tapscott SJ. Antisense transcription and
heterochromatin at the DM1 CTG repeats are constrained
by CTCF. Mol Cell. 2005; 20 (3): 483-489. doi: 10.1016/j.
molcel.2005.09.002.
Timchenko NA, Patel R, Iakova P, Cai ZJ, Quan L,
Timchenko LT. Overexpression of CUG triplet repeatbinding protein, CUGBP1, in mice inhibits myogenesis.
J Biol Chem. 2004; 279 (13): 13129-13139. doi: 10.1074/
jbc.M312923200.
Gudde AEEG, van Heeringen SJ, de Oude AI,
van Kessel IDG, Estabrook J, Wang ET et al.
Antisense transcription of the myotonic dystrophy locus
yields low-abundant RNAs with and without (CAG)
n repeat. RNA Biol. 2017; 14 (10): 1374-1388. doi:
1080/15476286.2017.1279787.
Perfetti A, Greco S, Bugiardini E, Cardani R, Gaia P,
Gaetano C et al. Plasma microRNAs as biomarkers for
myotonic dystrophy type 1. Neuromuscul Disord. 2014;
(6): 509-515.
Perbellini R, Greco S, Sarra-Ferraris G, Cardani R,
Capogrossi MC, Meola G, et al. Dysregulation and cellular
mislocalization of specific miRNAs in myotonic dystrophy
type 1. Neuromuscul Disord. 2011; 21 (2): 81-88
Furling D. Misregulation of alternative splicing and
microRNA processing in DM1 pathogenesis. Rinsho
Shinkeigaku. 2012; 52 (11): 1018-1022.
Fritegotto C, Ferrati C, Pegoraro V, Angelini C. MicroRNA expression in muscle and fiber morphometry in
myotonic dystrophy type 1. Neurol Sci. 2017; 38 (4):
-625.
Koutsoulidou A, Kyriakides TC, Papadimas GK, Christou
Y, Kararizou E, Papanicolaou EZ et al. Elevated musclespecific miRNAs in serum of myotonic dystrophy patients
relate to muscle disease progress. PLoS One. 2015; 10
(4): e0125341.
Sicot G, Gourdon G, Gomes-Pereira M. Myotonic
dystrophy, when simple repeats reveal complex
pathogenic entities: new findings and future challenges.
Hum Mol Genet. 2011; 20 (R2): R116-R123.
Chen Y, Zhou J. LncRNAs: macromolecules with big
roles in neurobiology and neurological diseases. Metab
Brain Dis. 2017; 32 (2): 281-291. doi: 10.1007/s11011-
-9965-8.
muscle dystrophies. Int J Mol Sci. 2013; 14 (10): 19681-
doi: 10.3390/ijms141019681.
Wei JW, Huang K, Yang C, Kang CS. Non-coding RNAs
as regulators in epigenetics (Review). Oncol Rep. 2017;
(1): 3-9. doi: 10.3892/or.2016.5236.
Qiu L, Tan EK, Zeng L. microRNAs and neurodegenerative
diseases. Adv Exp Med Biol. 2015; 888: 85-105. doi:
1007/978-3-319-22671-2_6.
Maxmen A. RNA: The genome’s rising stars. Nature.
; 496 (7443): 127-129.
Wang XQ, Crutchley JL, Dostie J. Shaping the genome
with non-coding RNAs. Curr Genomics. 2011; 12 (5):
-321.
Ponting CP, Oliver PL, Reik W. Evolution and functions
of long noncoding RNAs. Cell. 2009; 136 (4): 629-641.
Bartel DP. MicroRNAs: target recognition and regulatory
functions. Cell. 2009; 136 (2): 215-233.
Eisenberg I, Alexander MS, Kunkel LM. miRNAS in
normal and diseased skeletal muscle. J Cell Mol Med.
; 13 (1): 2-11.
Greco S, De Simone M, Colussi C, Zaccagnini G,
Fasanaro P, Pescatori M et al. Common micro-RNA
signature in skeletal muscle damage and regeneration
induced by Duchenne muscular dystrophy and acute
ischemia. FASEB J. 2009; 23 (10): 3335-3346.
Pegoraro V, Cudia P, Baba A, Angelini C. MyomiRNAs
and myostatin as physical rehabilitation biomarkers for
myotonic dystrophy. Neurol Sci. 2020; 41 (10): 2953-
Castanon I, Von Stetina S, Kass J, Baylies MK.
Dimerization partners determine the activity of the Twist
bHLH protein during Drosophila mesoderm development.
Development. 2001; 128 (16): 3145-2159.
Koutalianos D, Koutsoulidou A, Mastroyiannopoulos
NP, Furling D, Phylactou LA. MyoD transcription factor
induces myogenesis by inhibiting Twist-1 through miR206. J Cell Sci. 2015; 128 (19): 3631-3645.
Thum T, Gross C, Fiedler J, Fischer T, Kissler S, Bussen
M et al. MicroRNA-21 contributes to myocardial disease
by stimulating MAP kinase signalling in fibroblasts.
Nature. 2008; 456 (7224): 980-984.
Perfetti A, Greco S, Cardani R, Fossati B, Cuomo G,
Valaperta R et al. Validation of plasma microRNAs as
biomarkers for myotonic dystrophy type 1. Sci Rep. 2016;
: 38174.
Fernández-Costa JM, Llamusi B, Bargiela A, Zulaica
M, Alvarez-Abril MC, Perez-Alonso M et al. Six serum
miRNAs fail to validate as myotonic dystrophy type 1
biomarkers. PLoS One. 2016; 11 (2): e0150501.
Cerro-Herreros E, Fernandez-Costa JM, Sabater-Arcis M,
Llamusi B, Artero R. Derepressing muscleblind expression
by miRNA sponges ameliorates myotonic dystrophy-like
phenotypes in Drosophila. Sci Rep. 2016; 6: 36230.
Azotla-Vilchis CN, Sanchez-Celis D, Agonizantes-Juárez
LE, Suárez-Sánchez R, Hernández-Hernández JM, Peña
J et al. Transcriptome analysis reveals altered inflammatory
pathway in an inducible glial cell model of myotonic
dystrophy type 1. Biomolecules. 2021; 11 (2): 159.
Cappella M, Perfetti A, Cardinali B, Garcia-Manteiga JM,
Carrara M, Provenzano C et al. High-throughput analysis
of the RNA-induced silencing complex in myotonic
dystrophy type 1 patients identifies the dysregulation of
miR-29c and its target ASB2. Cell Death Dis. 2018; 9
(7): 729.
Boissonneault V, Plante I, Rivest S, Provost P.
MicroRNA-298 and microRNA-328 regulate expression
of mouse beta-amyloid precursor protein-converting
enzyme 1. J Biol Chem. 2009; 284 (4): 1971-1981.
Lukiw WJ. Micro-RNA speciation in fetal, adult and
Alzheimer’s disease hippocampus. Neuroreport. 2007;
(3): 297-300.
Martí E, Pantano L, Bañez-Coronel M, Llorens F,
Miñones-Moyano E, Porta S et al. A myriad of miRNA
variants in control and Huntington’s disease brain regions
detected by massively parallel sequencing. Nucleic Acids
Res. 2010; 38 (20): 7219-7235.
Packer AN, Xing Y, Harper SQ, Jones L, Davidson BL.
The bifunctional microRNA miR-9/miR-9* regulates
REST and CoREST and is downregulated in Huntington’s
disease. J Neurosci. 2008; 28 (53): 14341-14346.
Esteller M. Non-coding RNAs in human disease. Nat Rev
Genet. 2011; 12 (12): 861-874.
Wapinski O, Chang HY. Long noncoding RNAs and
human disease. Trends Cell Biol. 2011; 21 (6): 354-361.
Chen X. Predicting lncRNA-disease associations and
constructing lncRNA functional similarity network
based on the information of miRNA. Sci Rep. 2015;
: 13186.
Gudde AE, González-Barriga A, van den Broek WJ,
Wieringa B, Wansink DG. A low absolute number of
expanded transcripts is involved in myotonic dystrophy
type 1 manifestation in muscle. Hum Mol Genet. 2016;
(8): 1648-1662.
Moazed D. Small RNAs in transcriptional gene silencing
and genome defence. Nature. 2009; 457 (7228): 413-420.
Jinek M, Doudna JA. A three-dimensional view of the
molecular machinery of RNA interference. Nature. 2009;
(7228): 405-412.
Morris KV, Chan SW, Jacobsen SE, Looney DJ.
Small interfering RNA-induced transcriptional gene
silencing in human cells. Science. 2004; 305 (5688):
-1292.
Yu Z, Teng X, Bonini NM. Triplet repeat-derived siRNAs
enhance RNA-mediated toxicity in a Drosophila model
for myotonic dystrophy. PLoS Genet. 2011; 7 (3):
e1001340.
Chen LL. The biogenesis and emerging roles of circular
RNAs. Nat Rev Mol Cell Biol. 2016; 17 (4): 205-211.
Xiao MS, Ai Y, Wilusz JE. Biogenesis and Functions of
circular RNAs come into focus. Trends Cell Biol. 2020;
(3): 226-2240.
Czubak K, Sedehizadeh S, Kozlowski P, Wojciechowska
M. An overview of circular RNAs and their implications in
myotonic dystrophy. Int J Mol Sci. 2019; 20 (18): 4385.
Czubak K, Taylor K, Piasecka A, Sobczak K, Kozlowska
K, Philips A et al. Global increase in circular RNA levels
in myotonic dystrophy. Front Genet. 2019; 10: 649.
Voellenkle C, Perfetti A, Carrara M, Fuschi P, Renna
LV, Longo M et al. Dysregulation of circular RNAs in
myotonic dystrophy type 1. Int J Mol Sci. 2019; 20 (8):
Gambardella S, Rinaldi F, Lepore SM, Viola A, Loro E,
Angelini C et al. Overexpression of microRNA-206 in the
skeletal muscle from myotonic dystrophy type 1 patients.
J Transl Med. 2010; 8: 48.
Greco S, Perfetti A, Fasanaro P, Cardani R, Capogrossi
MC, Meola G et al. Deregulated microRNAs in myotonic
dystrophy type 2. PLoS One. 2012; 7 (6): e39732.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra
This work is licensed under a Creative Commons Attribution 4.0 International License.
© Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra under a Creative Commons Attribution 4.0 International (CC BY 4.0) license which allows to reproduce and modify the content if appropiate recognition to the original source is given.