Myogenic compromise of satellites cells in muscular dystrophies

Authors

  • Sara H Vélez-Caballero Sección de Estudios de Postgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional. Programa de Maestría en Ciencias de la Salud, Escuela Superior de Medicina, Instituto Politécnico Nacional. Ciudad de México, México.
  • Luis J Cano-Martínez Sección de Estudios de Postgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional. Ciudad de México, México.
  • Ramón M Coral-Vázquez Sección de Estudios de Postgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional. Subdirección de Enseñanza e Investigación, Centro Médico Nacional 20 de Noviembre, Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado (ISSSTE). Ciudad de México, México.

DOI:

https://doi.org/10.35366/113830

Keywords:

satellites cells, muscle regeneration, muscular dystrophies

Abstract

Satellites cells make up a heterogeneous group of cells that includes stem cells and skeletal muscle progenitor cells. These specialized muscle cells play a key role in muscle regeneration. During a process of severe damage to the muscle fiber, the muscle regeneration machinery is launched, involving several signaling pathways that lead to the activation of satellites cells. The above directs the muscle to carry out an orderly repair mechanism. However, it has been proposed that the reduction or loss of muscle repair capacity after injury, with a concomitant decrease in myogenic commitment of satellites cells, could be the cause of the damage observed in various forms of muscular dystrophy. The myogenic commitment of satellites cells can be affected by different mechanisms, such as the state of chronic inflammation, the deregulation of fibro-adipogenic progenitors or the senescence process. All of this results in a decrease in muscle regenerative capacity and further muscle degeneration. The purpose of this review is to describe some of the most relevant mechanisms that alter the myogenic commitment of satellites cells and how these influence the decrease in muscle repair in muscles affected by muscular dystrophy.

References

Frontera WR, Ochala J. Skeletal muscle: a brief review of structure and function. Calcif Tissue Int. 2015; 96 (3): 183-195.

Mukund K, Subramaniam S. Skeletal muscle: a review of molecular structure and function, in health and disease. Wiley Interdiscip Rev Syst Biol Med. 2020; 12 (1): e1462.

Murach KA, Fry CS, Kirby TJ, Jackson JR, Lee JD, White SH et al. Starring or supporting role? Satellite cells and skeletal muscle fiber size regulation. Physiology (Bethesda). 2018; 33 (1): 26-38.

McCuller C, Jessu R, Callahan AL. Physiology, skeletal muscle. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023.

Egan B, Zierath JR. Exercise metabolism and the molecular regulation of skeletal muscle adaptation. Cell Metab. 2013; 7 (2): 162-184.

Kallabis S, Abraham L, Müller S, Dzialas V, Türk C, Wiederstein JL et al. High-throughput proteomics fiber typing (ProFiT) for comprehensive characterization of single skeletal muscle fibers. Skelet Muscle. 2020; 10 (1): 7.

Sousa-Victor P, García-Prat L, Muñoz-Cánoves P. Control of satellite cell function in muscle regeneration and its disruption in ageing. Nat Rev Mol Cell Biol. 2022; 23 (3): 204-226.

Deprez A, Orfi Z, Rieger L, Dumont NA. Impaired muscle stem cell function and abnormal myogenesis in acquired myopathies. Biosci Rep. 2023; 43 (1): BSR20220284.

Mercuri E, Bonnemann CG, Muntoni F. Muscular dystrophies. Lancet. 2019; 394 (10213): 2025-2038.

Dumont NA, Bentzinger CF, Sincennes MC, Rudnicki MA. Satellite cells and skeletal muscle regeneration. Compr Physiol. 2015; 5 (3): 1027-1059.

Schmidt M, Schüler SC, Hüttner SS, von Eyss B, von Maltzahn J. Adult stem cells at work: regenerating skeletal muscle. Cell Mol Life Sci. 2019; 76 (13): 2559-2570.

Feige P, Brun CE, Ritso M, Rudnicki MA. Orienting muscle stem cells for regeneration in homeostasis, aging, and disease. Cell Stem Cell. 2018; 23 (5): 653-664.

Yanay N, Rabie M, Nevo Y. Impaired regeneration in dystrophic muscle-new target for therapy. Front Mol Neurosci. 2020; 13: 69.

Zammit PS, Golding JP, Nagata Y, Hudon V, Partridge TA, Beauchamp JR. Muscle satellite cells adopt divergent fates: a mechanism for self-renewal? J Cell Biol. 2004; 166 (3): 347-357.

Olguin HC, Olwin BB. Pax-7 up-regulation inhibits myogenesis and cell cycle progression in satellite cells: a potential mechanism for self-renewal. Dev Biol. 2004; 275 (2): 375-388.

Günther S, Kim J, Kostin S, Lepper C, Fan CM, Braun T. Myf5-positive satellite cells contribute to Pax7-dependent long-term maintenance of adult muscle stem cells. Cell Stem Cell. 2013; 13 (5): 590-601.

Yin H, Price F, Rudnicki MA. Satellite cells and the muscle stem cell niche. Physiol Rev. 2013; 93 (1): 23-67.

Olguin HC, Yang Z, Tapscott SJ, Olwin BB. Reciprocal inhibition between Pax7 and muscle regulatory factors modulates myogenic cell fate determination. J Cell Biol. 2007; 177 (5): 769-779.

Zammit PS. Function of the myogenic regulatory factors Myf5, MyoD, Myogenin and MRF4 in skeletal muscle, satellite cells and regenerative myogenesis. Semin Cell Dev Biol. 2017; 72: 19-32.

Whalen RG, Harris JB, Butler-Browne GS, Sesodia S. Expression of myosin isoforms during notexin-induced regeneration of rat soleus muscles. Dev Biol. 1990; 141 (1): 24-40.

Leikina E, Gamage DG, Prasad V, Goykhberg J, Crowe M, Diao J et al. Myomaker and myomerger work independently to control distinct steps of membrane remodeling during myoblast fusion. Dev Cell. 2018; 46 (6): 767-780.e7.

Millay DP, Sutherland LB, Bassel-Duby R, Olson EN. Myomaker is essential for muscle regeneration. Genes Dev. 2014; 28 (15): 1641-1646.

Molina T, Fabre P, Dumont NA. Fibro-adipogenic progenitors in skeletal muscle homeostasis, regeneration, and diseases. Open Biol. 2021; 11 (12): 210110.

Schüler SC, Liu Y, Dumontier S, Grandbois M, Le Moal E, Cornelison D et al. Extracellular matrix: Brick and mortar in the skeletal muscle stem cell niche. Front Cell Dev Biol. 2022; 10: 1056523.

Li EW, McKee-Muir OC, Gilbert PM. Cellular biomechanics in skeletal muscle regeneration. Curr Top Dev Biol. 2018; 126: 125-176.

Wosczyna MN, Konishi CT, Perez Carbajal EE, Wang TT, Walsh RA, Gan Q et al. Mesenchymal stromal cells are required for regeneration and homeostatic maintenance of skeletal muscle. Cell Rep. 2019; 27 (7): 2029-2035.e5.

Reggio A, Rosina M, Palma A, Cerquone Perpetuini A, Petrilli LL, Gargioli C et al. Adipogenesis of skeletal muscle fibro/adipogenic progenitors is affected by the WNT5a/GSK3/β-catenin axis. Cell Death Differ. 2020; 27(10): 2921-2941.

Xu X, Zheng L, Yuan Q, Zhen G, Crane JL, Zhou X et al. Transforming growth factor- β in stem cells and tissue homeostasis. Bone Res. 2018; 6: 2. 29. Contreras O, Cruz-Soca M, Theret M, Soliman H, Tung LW, Groppa E et al. Cross-talk between TGF-β and PDGFRα signaling pathways regulates the fate of stromal fibro-adipogenic progenitors. J Cell Sci. 2019; 132 (19): jcs232157.

Oprescu SN, Yue F, Qiu J, Brito LF, Kuang S. Temporal dynamics and heterogeneity of cell populations during skeletal muscle regeneration. iScience. 2020; 23 (4): 100993.

Lemos DR, Babaeijandaghi F, Low M, Chang CK, Lee ST, Fiore D et al. Nilotinib reduces muscle fibrosis in chronic muscle injury by promoting TNF-mediated apoptosis of fibro/adipogenic progenitors. Nat Med. 2015; 21 (7): 786-794.

Malecova B, Gatto S, Etxaniz U, Passafaro M, Cortez A, Nicoletti C et al. Dynamics of cellular states of fibro-adipogenic progenitors during myogenesis and muscular dystrophy. Nat Commun. 2018; 9 (1): 3670.

Murphy MM, Lawson JA, Mathew SJ, Hutcheson DA, Kardon G. Satellite cells, connective tissue fibroblasts and their interactions are crucial for muscle regeneration. Development. 2011; 138 (17): 3625-3637.

Abou-Khalil R, Mounier R, Chazaud B. Regulation of myogenic stem cell behavior by vessel cells: the “ménage à trois” of satellite cells, periendothelial cells and endothelial cells. Cell Cycle. 2010; 9 (5): 892-896.

Olfert IM, Howlett RA, Tang K, Dalton ND, Gu Y, Peterson KL et al. Muscle-specific VEGF deficiency greatly reduces exercise endurance in mice. J Physiol. 2009; 587 (Pt 8): 1755-1767.

Kim KI, Cho HJ, Hahn JY, Kim TY, Park KW, Koo BK et al. Beta-catenin overexpression augments angiogenesis and skeletal muscle regeneration through dual mechanism of vascular endothelial growth factor-mediated endothelial cell proliferation and progenitor cell mobilization. Arterioscler Thromb Vasc Biol. 2006; 26 (1): 91-98.

Earle N, Bevilacqua JA. Distrofias musculares en el paciente adulto. Revista Médica Clínica las Condes. 2018; 29 (6): 599-610.

Poyatos-García J, Martí P, Liquori A, Muelas N, Pitarch I, Martinez-Dolz L et al. Dystrophinopathy phenotypes and modifying factors in DMD exon 45-55 deletion. Ann Neurol. 2022; 92 (5): 793-806.

Chen W, You W, Valencak TG, Shan T. Bidirectional roles of skeletal muscle fibro-adipogenic progenitors in homeostasis and disease. Ageing Res Rev. 2022; 80: 101682.

Cappellari O, Mantuano P, De Luca A. “The Social Network” and muscular dystrophies: the lesson learnt about the niche environment as a target for therapeutic strategies. Cells. 2020; 9 (7): 1659.

Mashinchian O, Pisconti A, Le Moal E, Bentzinger CF. El nicho de las células madre musculares en la salud y la enfermedad. Miogénesis en el desarrollo y la enfermedad. 2018; 126: 23-65.

Mahdy MAA. Skeletal muscle fibrosis: an overview. Cell Tissue Res. 2019; 375 (3): 575-588.

Porter JD, Khanna S, Kaminski HJ, Rao JS, Merriam AP, Richmonds CR et al. A chronic inflammatory response dominates the skeletal muscle molecular signature in dystrophin-deficient mdx mice. Hum Mol Genet. 2002; 11 (3): 263-272.

Mann CJ, Perdiguero E, Kharraz Y, Aguilar S, Pessina P, Serrano AL et al. Aberrant repair and fibrosis development in skeletal muscle. Skelet Muscle. 2011; 1 (1): 21.

Carlson ME, Conboy MJ, Hsu M, Barchas L, Jeong J, Agrawal A et al. Relative roles of TGF-beta1 and Wnt in the systemic regulation and aging of satellite cell responses. Aging Cell. 2009; 8 (6): 676-689.

Mázala DA, Novak JS, Hogarth MW, Nearing M, Adusumalli P, Tully CB et al. TGF-β-driven muscle degeneration and failed regeneration underlie disease onset in a DMD mouse model. JCI Insight. 2020; 5 (6): e135703.

Zanotti S, Gibertini S, Mora M. Altered production of extra-cellular matrix components by muscle-derived Duchenne muscular dystrophy fibroblasts before and after TGF-beta1 treatment. Cell Tissue Res. 2010; 339 (2): 397-410.

Pessina P, Kharraz Y, Jardí M, Fukada S, Serrano AL, Perdiguero E et al. Fibrogenic cell plasticity blunts tissue regeneration and aggravates muscular dystrophy. Stem Cell Reports. 2015; 4 (6): 1046-1060.

Michele DE. Mechanisms of skeletal muscle repair and regeneration in health and disease. FEBS J. 2022; 289: 6460-6462.

Yao L, Tichy ED, Zhong L et al. Gli1 defines a subset of fibro-adipogenic progenitors that promote skeletal muscle regeneration with less fat accumulation. J Bone Miner Res. 2021; 36 (6): 1159-1173.

Smith LR, Barton ER. Regulation of fibrosis in muscular dystrophy. Matrix Biol. 2018; 68-69: 602-615.

Saito Y, Chikenji TS, Matsumura T et al. Exercise enhances skeletal muscle regeneration by promoting senescence in fibro-adipogenic progenitors. Nat Commun. 2020; 11: 889.

Sikora E, Bielak-Zmijewska A, Mosieniak G. What is and what is not cell senescence. Postepy Biochem. 2018; 64 (2): 110-111.

Walter LD, Orton JL, Fong EHH, Maymi VI, Rudd BD, Elisseeff JH et al. Single-cell transcriptomic analysis of skeletal muscle regeneration across mouse lifespan identifies altered stem cell states associated with senescence. BioRxiv [Preprint]. 2023:

05.25.542370.

Moiseeva V, Cisneros A, Sica V et al. Senescence atlas reveals an aged-like inflamed niche that blunts muscle regeneration. Nature. 2023; 613 (7942): 169-178.

Liu L, Yue X, Sun Z, Hambright WS, Feng Q, Cui Yet al. Senolytic elimination of senescent macrophages restores muscle stem cell function in severely dystrophic muscle. Aging (Albany NY). 2022; 14 (19): 7650-7661.

Saito Y, Chikenji TS. Diverse roles of senescence in skeletal muscle inflammation, regeneration, and therapeutics. Front Pharmacol. 2021; 12: 739510.

Young LV, Wakelin G, Cameron AWR et al. Muscle injury induces a transient senescence-like state that is required for myofiber growth during muscle regeneration. FASEB J. 2022; 36 (11): e22587.

Ribeiro AF Jr, Souza LS, Almeida CF, Ishiba R, Fernandes SA, Guerrieri DA et al. Muscle satellite cells and impaired late stage regeneration in different murine models for muscular dystrophies. Sci Rep. 2019; 9 (1): 11842.

Boyer JG, Huo J, Han S, Havens JR, Prasad V, Lin BL et al. Depletion of skeletal muscle satellite cells attenuates pathology in muscular dystrophy. Nat Commun. 2022; 13 (1): 2940.

Published

2024-04-27

How to Cite

1.
Vélez-Caballero SH, Cano-Martínez LJ, Coral-Vázquez RM. Myogenic compromise of satellites cells in muscular dystrophies. Invest. Discapacidad [Internet]. 2024 Apr. 27 [cited 2025 Jan. 24];10(1):54-60. Available from: https://dsm.inr.gob.mx/indiscap/index.php/INDISCAP/article/view/14

Issue

Section

Evidence synthesis and meta-research

Most read articles by the same author(s)

Similar Articles

1 2 3 4 > >> 

You may also start an advanced similarity search for this article.