Zebrafish: modeling senescence in the context of disease and regeneration

Authors

  • Samantha Carrillo-Rosas
  • Alfonso D Ríos-Pérez
  • Cecilia Zampedri

DOI:

https://doi.org/10.35366/107513

Keywords:

senescence, disease modeling, zebrafish, cancer, neurodegeneration, heart regeneration

Abstract

Cellular senescence is a natural biological process characterized by permanent and irreversible
state of cellular arrest, mitochondrial alteration, and secretion of senescence-associated phenotype
(SASP) components. Several factors can induce senescence, including DNA damage,
oxidative stress, and neuroinflammation, these factors have also been linked to several disorders
such as Alzheimer’s, Parkinson’s, cancer, among others. The increased presence of senescent cells
among different diseases suggests the importance of senescence in the pathophysiology of a great
number of disorders, thus the need for different models that could help deepen our understanding of
the molecular mechanisms of senescence, identify possible targets for therapeutic interventions, and
arising challenges. In addition to in vitro models, most senescent research has come from classical
model species, i.e., mouse and rat. Senescence is highly
conserved; different studies have shown that senescent cells seem to accumulate in all vertebrate
organisms and that several associated genes show similar expression patterns, opening the door to
new vertebrate models. The zebrafish has become a strong emerging model for different diseases,
such as cancer, inflammation, neurodegeneration, among others; it shares multiple advantages with
classical models, such as well-established genome editing tools and a fully sequenced genome.
Additionally, zebrafish exhibit multiple advantages, including high fecundity for robust statistical
analysis, external fertilization, and optical transparency that enables powerful imaging capabilities
and makes it a versatile model for experimental manipulation and structural visualization. Here we
present the zebrafish as a model that can contribute significantly to our understanding of the processes
involved in senescence and age-related diseases.

References

Hayflick L, Moorhead PS. The serial cultivation of human

diploid cell strains. Exp Cell Res. 1961; 25: 585-621.

Hernandez-Segura A, Nehme J, Demaria M. Hallmarks

of cellular senescence. Trends Cell Biol. 2018; 28 (6):

-453.

He S, Sharpless NE. Senescence in health and disease.

Cell. 2017; 169 (6): 1000-1011.

Caprioli J. Glaucoma: a disease of early cellular

senescence. Invest Ophthalmol Vis Sci. 2013; 54 (14):

ORSF60-ORSF67.

Narasimhan A, Flores RR, Robbins PD, Niedernhofer

LJ. Role of cellular senescence in type II diabetes.

Endocrinology. 2021; 162 (10): bqab136.

Barth E, Srivastava A, Stojiljkovic M, Frahm C, Axer

H, Witte OW et al. Conserved aging-related signatures

of senescence and inflammation in different tissues

and species. Aging (Albany NY). 2019; 11 (19): 8556-

Ota S, Kawahara A. Zebrafish: a model vertebrate

suitable for the analysis of human genetic disorders.

Congenit Anom (Kyoto). 2014; 54 (1): 8-11.

Varga M. The doctor of delayed publications: the

remarkable life of George Streisinger (1927-1984).

Zebrafish. 2018; 15 (3): 314-319.

Patton EE, Zon LI, Langenau DM. Zebrafish disease

models in drug discovery: from preclinical modelling

to clinical trials. Nat Rev Drug Discov. 2021; 20 (8):

-628.

Howe K, Clark MD, Torroja CF, Torrance J, Berthelot

C, Muffato M et al. The zebrafish reference genome

sequence and its relationship to the human genome.

Nature. 2013; 496 (7446): 498-503.

Hruscha A, Krawitz P, Rechenberg A, Heinrich V, Hecht

J, Haass C et al. Efficient CRISPR/Cas9 genome editing

with low off-target effects in zebrafish. Development.

; 140 (24): 4982-4987.

Huang P, Zhu Z, Lin S, Zhang B. Reverse genetic

approaches in zebrafish. J Genet Genomics. 2012; 39

(9): 421-433.

Childs BG, Baker DJ, Wijshake T, Conover CA, Campisi

J, van Deursen JM. Senescent intimal foam cells are

deleterious at all stages of atherosclerosis. Science.

; 354 (6311): 472-477.

Gorgoulis V, Adams PD, Alimonti A, Bennett DC, Bischof

O, Bishop C et al. Cellular senescence: defining a path

forward. Cell. 2019; 179 (4): 813-827.

Minamino T, Orimo M, Shimizu I, Kunieda T, Yokoyama

M, Ito T et al. A crucial role for adipose tissue p53 in the

regulation of insulin resistance. Nat Med. 2009; 15 (9):

-1087.

Niccoli T, Partridge L. Ageing as a risk factor for disease.

Curr Biol. 2012; 22 (17): R741-R752.

Lujambio A, Akkari L, Simon J, Grace D, Tschaharganeh

DF, Bolden JE et al. Non-cell-autonomous tumor

suppression by p53. Cell. 2013; 153 (2): 449-460.

Acosta JC, O’Loghlen A, Banito A, Guijarro MV, Augert

A, Raguz S et al. Chemokine signaling via the CXCR2

receptor reinforces senescence. Cell. 2008; 133 (6):

-1018.

Krizhanovsky V, Yon M, Dickins RA, Hearn S, Simon J,

Miething C et al. Senescence of activated stellate cells

limits liver fibrosis. Cell. 2008; 134 (4): 657-667.

Faget DV, Ren Q, Stewart SA. Unmasking senescence:

context-dependent effects of SASP in cancer. Nat Rev

Cancer. 2019; 19 (8): 439-453.

Mongiardi MP, Pellegrini M, Pallini R, Levi A, Falchetti

ML. Cancer response to therapy-induced senescence:

a matter of dose and timing. Cancers (Basel). 2021; 13

(3): 484.

Yasuda T, Baba H, Ishimoto T. Cellular senescence in

the tumor microenvironment and context-specific cancer

treatment strategies. FEBS J. 2021.

Zampedri C, Martinez-Flores WA, Melendez-Zajgla J.

The use of zebrafish xenotransplant assays to analyze

the role of lncRNAs in breast cancer. Front Oncol. 2021;

: 687594.

Britto DD, Wyroba B, Chen W, Lockwood RA, Tran

KB, Shepherd PR et al. Macrophages enhance Vegfadriven angiogenesis in an embryonic zebrafish tumour

xenograft model. Dis Model Mech. 2018; 11 (12):

dmm035998.

Hanna SJ, McCoy-Simandle K, Leung E, Genna A,

Condeelis J, Cox D. Tunneling nanotubes, a novel

mode of tumor cell-macrophage communication

in tumor cell invasion. J Cell Sci. 2019; 132 (3):

jcs223321.

Varanda AB, Martins-Logrado A, Ferreira MG, Fior

R. Zebrafish xenografts unveil sensitivity to Olaparib

beyond BRCA status. Cancers (Basel). 2020; 12 (7):

Jurk D, Wang C, Miwa S, Maddick M, Korolchuk V,

Tsolou A et al. Postmitotic neurons develop a p21-

dependent senescence-like phenotype driven by a DNA

damage response. Aging Cell. 2012; 11 (6): 996-1004.

Dehkordi SK, Walker J, Sah E, Bennett E, Atrian F, Frost

B et al. Profiling senescent cells in human brains reveals

neurons with CDKN2D/p19 and tau neuropathology. Nat

Aging. 2021; 1 (12): 1107-1116.

Zhang C, Zhu Q, Hua T. Aging of cerebellar Purkinje

cells. Cell Tissue Res. 2010; 341 (3): 341-347.

Hu Y, Fryatt GL, Ghorbani M, Obst J, Menassa DA,

Martin-Estebane M et al. Replicative senescence

dictates the emergence of disease-associated microglia

and contributes to Abeta pathology. Cell Rep. 2021; 35

(10): 109228.

Shahidehpour RK, Higdon RE, Crawford NG, Neltner

JH, Ighodaro ET, Patel E et al. Dystrophic microglia

are associated with neurodegenerative disease and

not healthy aging in the human brain. Neurobiol Aging.

; 99: 19-27.

Hu Y, Huang Y, Xing S, Chen C, Shen D, Chen J. Abeta

promotes CD38 expression in senescent microglia in

Alzheimer’s disease. Biol Res. 2022; 55 (1): 10.

Ungerleider K, Beck J, Lissa D, Turnquist C, Horikawa

I, Harris BT et al. Astrocyte senescence and SASP in

neurodegeneration: tau joins the loop. Cell Cycle. 2021;

(8): 752-764.

Limbad C, Oron TR, Alimirah F, Davalos AR, Tracy TE,

Gan L et al. Astrocyte senescence promotes glutamate

toxicity in cortical neurons. PLoS One. 2020; 15 (1):

e0227887.

Capilla-Gonzalez V, Cebrian-Silla A, GuerreroCazares H, Garcia-Verdugo JM, Quinones-Hinojosa

A. Age-related changes in astrocytic and ependymal

cells of the subventricular zone. Glia. 2014; 62 (5):

-803.

Harkins D, Cooper HM, Piper M. The role of lipids in

ependymal development and the modulation of adult

neural stem cell function during aging and disease.

Semin Cell Dev Biol. 2021; 112: 61-68.

Rivellini C, Porrello E, Dina G, Mrakic-Sposta

S, Vezzoli A, Bacigaluppi M et al. JAB1 deletion

in oligodendrocytes causes senescence-induced

inflammation and neurodegeneration in mice. J Clin

Invest. 2022; 132 (3): e145071.

Tanaka J, Okuma Y, Tomobe K, Nomura Y. The

age-related degeneration of oligodendrocytes in the

hippocampus of the senescence-accelerated mouse

(SAM) P8: a quantitative immunohistochemical study.

Biol Pharm Bull. 2005; 28 (4): 615-618.

Zhang J, Gao F, Ma Y, Xue T, Shen Y. Identification of

early-onset photoreceptor degeneration in transgenic

mouse models of Alzheimer’s disease. iScience. 2021;

(11): 103327.

Rocha LR, Nguyen Huu VA, Palomino La Torre C,

Xu Q, Jabari M, Krawczyk M et al. Early removal of

senescent cells protects retinal ganglion cells loss in

experimental ocular hypertension. Aging Cell. 2020;

(2): e13089.

Kohlmeyer JL, Kaemmer CA, Umesalma S, Gourronc

FA, Klingelhutz AJ, Quelle DE. RABL6A regulates

Schwann cell senescence in an RB1-dependent

manner. Int J Mol Sci. 2021; 22 (10): 5367.

Parker MH. The altered fate of aging satellite cells is

determined by signaling and epigenetic changes. Front

Genet. 2015; 6: 59.

Sreekumar PG, Hinton DR, Kannan R. The emerging

role of senescence in ocular disease. Oxid Med Cell

Longev. 2020; 2020: 2583601.

Rouillard ME, Hu J, Sutter PA, Kim HW, Huang JK,

Crocker SJ. The cellular senescence factor extracellular

HMGB1 directly inhibits oligodendrocyte progenitor cell

differentiation and impairs CNS remyelination. Front Cell

Neurosci. 2022; 16: 833186.

Olivieri F, Prattichizzo F, Grillari J, Balistreri CR. Cellular

senescence and inflammaging in age-related diseases.

Mediators Inflamm. 2018; 2018: 9076485.

Mogi M, Harada M, Kondo T, Riederer P, Inagaki

H, Minami M et al. Interleukin-1 beta, interleukin-6,

epidermal growth factor and transforming growth

factor-alpha are elevated in the brain from parkinsonian

patients. Neurosci Lett. 1994; 180 (2): 147-150.

Nicaise AM, Wagstaff LJ, Willis CM, Paisie C, Chandok

H, Robson P et al. Cellular senescence in progenitor

cells contributes to diminished remyelination potential

in progressive multiple sclerosis. Proc Natl Acad Sci U

S A. 2019; 116 (18): 9030-9039.

Schmidt R, Strahle U, Scholpp S. Neurogenesis in

zebrafish - from embryo to adult. Neural Dev. 2013; 8: 3.

Panula P, Chen YC, Priyadarshini M, Kudo H, Semenova

S, Sundvik M et al. The comparative neuroanatomy and

neurochemistry of zebrafish CNS systems of relevance

to human neuropsychiatric diseases. Neurobiol Dis.

; 40 (1): 46-57.

Guo S. Using zebrafish to assess the impact of drugs

on neural development and function. Expert Opin Drug

Discov. 2009; 4 (7): 715-726.

Panula P, Sallinen V, Sundvik M, Kolehmainen J, Torkko V,

Tiittula A et al. Modulatory neurotransmitter systems and

behavior: towards zebrafish models of neurodegenerative

diseases. Zebrafish. 2006; 3 (2): 235-247.

Blader P, Strahle U. Zebrafish developmental genetics

and central nervous system development. Hum Mol

Genet. 2000; 9 (6): 945-951.

Cassar S, Adatto I, Freeman JL, Gamse JT, Iturria I,

Lawrence C et al. Use of zebrafish in drug discovery

toxicology. Chem Res Toxicol. 2020; 33 (1): 95-118.

Kim K, Choe HK. Role of hypothalamus in aging and

its underlying cellular mechanisms. Mech Ageing Dev.

; 177: 74-79.

Zhang Y, Kim MS, Jia B, Yan J, Zuniga-Hertz JP, Han

C et al. Hypothalamic stem cells control ageing speed

partly through exosomal miRNAs. Nature. 2017; 548

(7665): 52-57.

Zambusi A, Pelin Burhan O, Di Giaimo R, Schmid B,

Ninkovic J. Granulins regulate aging kinetics in the adult

zebrafish telencephalon. Cells. 2020; 9 (2): 350.

Suzuki DG, Perez-Fernandez J, Wibble T, Kardamakis

AA, Grillner S. The role of the optic tectum for visually

evoked orienting and evasive movements. Proc Natl

Acad Sci U S A. 2019; 116 (30): 15272-15281.

Thiele TR, Donovan JC, Baier H. Descending control

of swim posture by a midbrain nucleus in zebrafish.

Neuron. 2014; 83 (3): 679-691.

Heap LA, Goh CC, Kassahn KS, Scott EK. Cerebellar

output in zebrafish: an analysis of spatial patterns and

topography in eurydendroid cell projections. Front

Neural Circuits. 2013; 7: 53.

Liang KJ, Carlson ES. Resistance, vulnerability and

resilience: A review of the cognitive cerebellum in aging

and neurodegenerative diseases. Neurobiol Learn Mem.

; 170: 106981.

Bernard JA, Seidler RD. Moving forward: age effects on

the cerebellum underlie cognitive and motor declines.

Neurosci Biobehav Rev. 2014; 42: 193-207.

Houser SR, Margulies KB, Murphy AM, Spinale FG,

Francis GS, Prabhu SD et al. Animal models of heart

failure: a scientific statement from the American Heart

Association. Circ Res. 2012; 111 (1): 131-150.

Senyo SE, Lee RT, Kuhn B. Cardiac regeneration

based on mechanisms of cardiomyocyte proliferation

and differentiation. Stem Cell Res. 2014; 13 (3 Pt B):

-541.

Poss KD, Wilson LG, Keating MT. Heart regeneration

in zebrafish. Science. 2002; 298 (5601): 2188-2190.

Mizoguchi T, Verkade H, Heath JK, Kuroiwa A, Kikuchi

Y. Sdf1/Cxcr4 signaling controls the dorsal migration

of endodermal cells during zebrafish gastrulation.

Development. 2008; 135 (15): 2521-2529.

Itou J, Oishi I, Kawakami H, Glass TJ, Richter J, Johnson

A et al. Migration of cardiomyocytes is essential for heart

regeneration in zebrafish. Development. 2012; 139 (22):

-4142.

Jing Y, Ren Y, Witzel HR, Dobreva G. A BMP4-p38

MAPK signaling axis controls ISL1 protein stability and

activity during cardiogenesis. Stem Cell Reports. 2021;

(8): 1894-1905.

Gonzalez-Rosa JM, Peralta M, Mercader N. Panepicardial lineage tracing reveals that epicardium

derived cells give rise to myofibroblasts and perivascular

cells during zebrafish heart regeneration. Dev Biol. 2012;

(2): 173-186.

Sanz-Morejon A, Garcia-Redondo AB, Reuter H,

Marques IJ, Bates T, Galardi-Castilla M et al. Wilms tumor

b expression defines a pro-regenerative macrophage

subtype and is required for organ regeneration in the

zebrafish. Cell Rep. 2019; 28 (5): 1296-1306.e6.

Marques IJ, Ernst A, Arora P, Vianin A, Hetke T,

Sanz-Morejon A et al. Wt1 transcription factor impairs

cardiomyocyte specification and drives a phenotypic

switch from myocardium to epicardium. Development.

; 149 (6): dev200375.

Aisagbonhi O, Rai M, Ryzhov S, Atria N, Feoktistov I,

Hatzopoulos AK. Experimental myocardial infarction

triggers canonical Wnt signaling and endothelial-tomesenchymal transition. Dis Model Mech. 2011; 4 (4):

-483.

Bastakoty D, Saraswati S, Joshi P, Atkinson J,

Feoktistov I, Liu J et al. Temporary, systemic inhibition of

the WNT/beta-catenin pathway promotes regenerative

cardiac repair following myocardial infarct. Cell Stem

Cells Regen Med. 2016; 2 (2): 10.16966/2472-6990.111.

Bertozzi A, Wu CC, Hans S, Brand M, Weidinger G.

Wnt/beta-catenin signaling acts cell-autonomously to

promote cardiomyocyte regeneration in the zebrafish

heart. Dev Biol. 2022; 481: 226-237.

Hu B, Lelek S, Spanjaard B, El-Sammak H, Simoes

MG, Mintcheva J et al. Origin and function of activated

fibroblast states during zebrafish heart regeneration.

Nat Genet. 2022; 54 (8): 1227-1237.

Kishi S, Uchiyama J, Baughman AM, Goto T, Lin

MC, Tsai SB. The zebrafish as a vertebrate model of

functional aging and very gradual senescence. Exp

Gerontol. 2003; 38 (7): 777-786.

Reuter H, Perner B, Wahl F, Rohde L, Koch P, Groth

M et al. Aging activates the immune system and alters

the regenerative capacity in the zebrafish heart. Cells.

; 11 (3): 345

Downloads

Published

2022-12-30

How to Cite

1.
Carrillo-Rosas S, Ríos-Pérez AD, Zampedri C. Zebrafish: modeling senescence in the context of disease and regeneration. InDiscap [Internet]. 2022 Dec. 30 [cited 2024 Sep. 19];8(3):124-31. Available from: https://dsm.inr.gob.mx/indiscap/index.php/INDISCAP/article/view/99

Issue

Section

Evidence synthesis and meta-research