Tissue engineering in bone regeneration

Authors

  • Erika Karina Ruvalcaba-Paredes Biotechnology Unit, National Center for Research and Burn Care (CENIAQ), National Rehabilitation Institute. Ministry of Health. Mexico City, Mexico.
  • Ana Brena-Molina Biotechnology Unit, National Center for Research and Burn Care (CENIAQ), National Rehabilitation Institute. Ministry of Health. Mexico City, Mexico.
  • Lenin Tamay de Dios Biotechnology Unit, National Center for Research and Burn Care (CENIAQ), National Rehabilitation Institute. Ministry of Health. Mexico City, Mexico.
  • Maykel González-Torres Biotechnology Unit, National Center for Research and Burn Care (CENIAQ), National Rehabilitation Institute. Ministry of Health. Mexico City, Mexico.

DOI:

https://doi.org/10.35366/105480

Keywords:

Bone regeneration, bone tissue engineering, bone

Abstract

The objective of regenerative medicine is to repair and replace damaged tissues or lost, initiating the process of natural regeneration, and using technologies such as tissue engineering. Bone tissue engineering requires a scaffold, a source of cells and growth factors, alone or in combination, to initiate the process of tissue regeneration. Several studies have developed safe and effective scaffolds for  clinical use; some biomaterials used for bone reconstruction include ceramics, demineralized bone  matrix, metals, and natural or synthetic biopolymers. The cells are an integral part of the strategy of Tissue Engineering, isolation, expansion efficiency, stability of the osteoblast phenotype, the ability of bone formation in vivo, as well as long-term security are essential requirements that must be met by any osteogenic cell type for successful clinical application in tissue engineering concepts. Growth factors are essential in tissue engineering because they function as signaling molecules that promote or prevent cell adhesion, proliferation, migration, and differentiation. This draft will mention each compound using tissue engineering strategy to repair and regenerate bone lesions and their clinical applications.

References

Nicoll SB. Materials for bone graft substitutes and

osseous tissue regeneration. In: Burdick JA, Mauck

RL. Biomaterials for tissue engineering applications.

Philadelphia, Pennsylvania, USA: Editorial Springer Wien

New York; 2011. pp. 343-362.

Peric KZ, Rider P, Alkildani S et al. An introduction to

bone tissue engineering. Int J Artif Organs. 2020; 43 (2):

-86. doi: 10.1177/0391398819876286.

Adel IM, ElMeligy MF, Elkasabgy NA. Conventional and

recent trends of scaffolds fabrication: a superior mode

for tissue engineering. Pharmaceutics. 2022; 14 (2): 306.

doi: 10.3390/pharmaceutics14020306.

Borrelli MR, Hu MS, Longaker MT, Lorenz HP.

Tissue engineering and regenerative medicine in

craniofacial reconstruction and facial aesthetics. J

Craniofac Surg. 2020; 31 (1): 15-27. doi: 10.1097/SCS.

Adamski R, Siuta D. Mechanical, structural, and biological

properties of chitosan/hydroxyapatite/silica composites

for bone tissue engineering. Molecules. 2021; 26 (7):

doi: 10.3390/molecules26071976.

Yu X, Tang X, Gohil SV, Laurencin CT. Biomaterials for

bone regenerative engineering. Adv Healthc Mater. 2015;

(9): 1268-1285. doi: 10.1002/adhm.201400760.

Storti G, Scioli MG, Kim BS, Orlandi A, Cervelli V.

Adipose-derived stem cells in bone tissue engineering:

useful tools with new applications. Stem Cells Int. 2019;

: 3673857. doi: 10.1155/2019/3673857.

Colazo JM, Evans BC, Farinas AF, Al-Kassis S, Duvall

CL, Thayer WP. Applied bioengineering in tissue

reconstruction, replacement, and regeneration. Tissue

Eng Part B Rev. 2019; 25 (4): 259-290. doi: 10.1089/

ten.TEB.2018.0325.

Ho-Shui-Ling A, Bolander J, Rustom LE, Johnson AW,

Luyten FP, Picart C. Bone regeneration strategies:

Engineered scaffolds, bioactive molecules and stem cells

current stage and future perspectives. Biomaterials. 2018;

: 143-162. doi: 10.1016/j.biomaterials.2018.07.017.

Jeyaraman M, Muthu S, Gangadaran P et al. Osteogenic

and chondrogenic potential of periosteum-derived

mesenchymal stromal cells: do they hold the key to the

future? Pharmaceuticals (Basel). 2021; 14 (11): 1133.

doi: 10.3390/ph14111133.

Polini A, Pisignano D, Parodi M, Quarto R, Scaglione

S. Osteoinduction of human mesenchymal stem cells

by bioactive composite scaffolds without supplemental

osteogenic growth factors. PLoS One. 2011; 6 (10):

e26211. doi: 10.1371/journal.pone.0026211.

Thrivikraman G, Athirasala A, Twohig C, Boda SK,

Bertassoni LE. Biomaterials for craniofacial bone

regeneration. Dent Clin North Am. 2017; 61 (4): 835-856.

doi: 10.1016/j.cden.2017.06.003.

Losee JE, Karmacharya J, Gannon FH et al. Reconstruction

of the immature craniofacial skeleton with a carbonated

calcium phosphate bone cement: interaction with

bioresorbable mesh. J Craniofac Surg. 2003; 14 (1): 117-

doi: 10.1097/00001665-200301000-00022.

Yang Y, Kang Y, Sen M, Park S. Bioceramics in tissue

engineering. In: Burdick JA, Mauck RL. Biomaterials

for tissue engineering applications. Philadelphia,

Pennsylvania, USA: Editorial Springer Wien New York;

pp. 343-362.

Zhang W, Yelick PC. Craniofacial Tissue Engineering.

Cold Spring Harb Perspect Med. 2018;8(1):a025775.

doi:10.1101/cshperspect.a025775.

Kang NH, Kim SJ, Song SH, Choi SM, Choi SY,

Kim YJ. Hydroxyapatite synthesis using EDTA. J

Craniofac Surg. 2013; 24 (3): 1042-1045. doi: 10.1097/

SCS.0b013e318290258b.

Teven CM, Fisher S, Ameer GA, He TC, Reid RR.

Biomimetic approaches to complex craniofacial

defects. Ann Maxillofac Surg. 2015; 5 (1): 4-13. doi:

4103/2231-0746.161044.

Pou AM. Update on new biomaterials and their use in

reconstructive surgery. Curr Opin Otolaryngol Head Neck

Surg. 2003; 11 (4): 240-244. doi: 10.1097/00020840-

-00004.

Gruskin E, Doll BA, Futrell FW, Schmitz JP, Hollinger JO.

Demineralized bone matrix in bone repair: history and

use. Adv Drug Deliv Rev. 2012; 64 (12): 1063-1077. doi:

1016/j.addr.2012.06.008.

Holt DJ, Grainger DW. Demineralized bone matrix as

a vehicle for delivering endogenous and exogenous

therapeutics in bone repair. Adv Drug Deliv Rev. 2012;

(12): 1123-1128. doi: 10.1016/j.addr.2012.04.002.

Jayasuriya AC, Ebraheim NA. Evaluation of bone matrix

and demineralized bone matrix incorporated PLGA

matrices for bone repair. J Mater Sci Mater Med. 2009;

: 1637-1644.

Gurevitch O, Kurkalli BG, Prigozhina T, Kasir J, Gaft

A, Slavin S. Reconstruction of cartilage, bone, and

hematopoietic microenvironment with demineralized

bone matrix and bone marrow cells. Stem Cells. 2003;

(5): 588-597. doi: 10.1634/stemcells.21-5-588.

Zhang S, Zhang X, Zhao C et al. Research on an Mg-Zn

alloy as a degradable biomaterial. Acta Biomater. 2010;

(2): 626-640. doi: 10.1016/j.actbio.2009.06.028.

Pedrero SG, Llamas-Sillero P, Serrano-López J.

A multidisciplinary journey towards bone tissue

engineering. Materials (Basel). 2021; 14 (17): 4896. doi:

3390/ma14174896.

Zhang Z. Bone regeneration by stem cell and tissue

engineering in oral and maxillofacial region. Front

Med. 2011; 5 (4): 401-413. doi: 10.1007/s11684-011-

-7.

Seong JM, Kim BC, Park JH, Kwon IK, Mantalaris A,

Hwang YS. Stem cells in bone tissue engineering.

Biomed Mater. 2010; 5 (6): 062001. doi: 10.1088/1748-

/5/6/062001.

Yoshimura H, Muneta T, Nimura A, Yokoyama A, Koga

H, Sekiya I. Comparison of rat mesenchymal stem cells

derived from bone marrow, synovium, periosteum,

adipose tissue, and muscle. Cell Tissue Res. 2007; 327

(3): 449-462. doi: 10.1007/s00441-006-0308-z.

Brohem CA, de Carvalho CM, Radoski CL et al.

Comparison between fibroblasts and mesenchymal

stem cells derived from dermal and adipose tissue.

Int J Cosmet Sci. 2013; 35 (5): 448-457. doi: 10.1111/

ics.12064.

De Bari C, Dell’Accio F, Vanlauwe J et al. Mesenchymal

multipotency of adult human periosteal cells demonstrated

by single-cell lineage analysis. Arthritis Rheum. 2006; 54

(4): 1209-1221. doi: 10.1002/art.21753.

Waese EY, Kandel RA, Stanford WL. Application of

stem cells in bone repair. Skeletal Radiol. 2008; 37 (7):

-608. doi: 10.1007/s00256-007-0438-8. Erratum

in: Skeletal Radiol. 2008; 37 (7): 691. Kandel, Rita R

[corrected to Kandel, Rita A].

Law S, Chaudhuri S. Review Mesenchymal stem

cell and regenerative medicine: regeneration versus

immunomodulatory challenges. Am J Stem Cell. 2013;

(1): 22-38.

Gelinsky M, Lode A, Bernhardt A, Rosen-Wolff A.

Stem cell engineering for regeneration of bone tissue.

Stem Cell Eng. 2011. doi: 10.1007/978-3-642-11865-

_17.

Sotiropoulou PA, Perez SA, Salagianni M, Baxevanis

CN, Papamichail M. Characterization of the optimal

culture conditions for clinical scale production of human

mesenchymal stem cells. Stem Cells. 2006; 24: 462-471.

doi: 10.1634/células madre.2004-0331.

Chang H, Knothe Tate ML. Concise review: the

periosteum: tapping into a reservoir of clinically useful

progenitor cells. Stem Cells Transl Med. 2012; 1 (6):

-491. doi: 10.5966/sctm.2011-0056.

Choi YS, Noh SE, Lim SM et al. Multipotency and growth

characteristic of periosteum-derived progenitor cells for

chondrogenic, osteogenic, and adipogenic differentiation.

Biotechnol Lett. 2008; 30 (4): 593-601. doi: 10.1007/

s10529-007-9584-2.

Ball MD, Bonzani IC, Bovis MJ, Williams A, Stevens MM.

Human periosteum is a source of cells for orthopaedic

tissue engineering: a pilot study. Clin Orthop Relat Res.

; 469 (11): 3085-3093. doi: 10.1007/s11999-011-

-x.

Honsawek S, Bumrungpanichthaworn P, Thitiset

T, Wolfinbarger L Jr. Gene expression analysis of

demineralized bone matrix-induced osteogenesis in

human periosteal cells using cDNA array technology.

Genet Mol Res. 2011; 10 (3): 2093-2103. doi: 10.4238/

vol10-3gmr1329.

Lamplot JD, Qin J, Nan G, Wang J, Liu X, Yin L et

al. BMP9 signaling in stem cell differentiation and

osteogenesis. Am J Stem Cells. 2013; 2 (1): 1-21.

Argintar E, Edwards S, Delahay J. Bone morphogenetic

proteins in orthopaedic trauma surgery. Injury. 2011; 42

(8): 730-734. doi: 10.1016/j.injury.2010.11.016.

Bessa PC, Casal M, Reis RL. Bone morphogenetic

proteins in tissue engineering: the road from laboratory

to clinic, part II (BMP delivery). J Tissue Eng Regen Med.

; 2 (2-3): 81-96. doi: 10.1002/term.74.

Logovskaya LV, Bukharova TB, Volkov AV, Vikhrova

EB, Makhnach OV, Goldshtein DV. Induction of

osteogenic differentiation of multipotent mesenchymal

stromal cells from human adipose tissue. Bull Exp Biol

Med. 2013; 155 (1): 145-150. doi: 10.1007/s10517-013-

-x.

Metzger W, Schimmelpfennig L, Schwab B et al. Expansion

and differentiation of human primary osteoblasts in two-

and three-dimensional culture. Biotech Histochem. 2013;

(2): 86-102. doi: 10.3109/10520295.2012.741262.

Downloads

Published

2024-07-10

How to Cite

1.
Ruvalcaba-Paredes EK, Brena-Molina A, Tamay de Dios L, González-Torres M. Tissue engineering in bone regeneration. Invest. Discapacidad [Internet]. 2024 Jul. 10 [cited 2024 Dec. 28];8(2):67-74. Available from: https://dsm.inr.gob.mx/indiscap/index.php/INDISCAP/article/view/76

Issue

Section

Evidence synthesis and meta-research

Similar Articles

1 2 3 > >> 

You may also start an advanced similarity search for this article.