Principal components analysis for the identification of sensitive variables in the execution of the motor gesture and the development of an artificial neural network as an auxiliary tool in the classification of sports performance in elite taekwondo athle

Authors

  • José Gilberto Franco-Sánchez Medicina del Deporte. Instituto Nacional de Rehabilitación «Luis Guillermo Ibarra Ibarra». CDMX, México.
  • Andrea Pegueros-Pérez Medicina del Deporte. Instituto Nacional de Rehabilitación «Luis Guillermo Ibarra Ibarra». CDMX, México.
  • Héctor Rafael Puig-Hernández Medicina del Deporte. Instituto Nacional de Rehabilitación «Luis Guillermo Ibarra Ibarra». CDMX, México.
  • Diego Mirabent-Amor Medicina del Deporte. Instituto Nacional de Rehabilitación «Luis Guillermo Ibarra Ibarra». CDMX, México.
  • Francisco Figueroa-Cavero Medicina del Deporte. Instituto Nacional de Rehabilitación «Luis Guillermo Ibarra Ibarra». CDMX, México.
  • Gabriel Vega-Martínez Medicina del Deporte. Instituto Nacional de Rehabilitación «Luis Guillermo Ibarra Ibarra». CDMX, México.
  • Virginia Bueyes-Roiz Laboratorio de Análisis de Movimiento e Ingeniería de Rehabilitación. Instituto Nacional de Rehabilitación «Luis Guillermo Ibarra Ibarra». CDMX, México.
  • Leonardo Eliú Anaya-Campos Laboratorio de Análisis de Movimiento e Ingeniería de Rehabilitación. Instituto Nacional de Rehabilitación «Luis Guillermo Ibarra Ibarra». CDMX, México.
  • Paris Joaquín Velasco-Acosta Laboratorio de Análisis de Movimiento e Ingeniería de Rehabilitación. Instituto Nacional de Rehabilitación «Luis Guillermo Ibarra Ibarra». CDMX, México.
  • Ivett Quiñones-Urióstegui Laboratorio de Análisis de Movimiento e Ingeniería de Rehabilitación. Instituto Nacional de Rehabilitación «Luis Guillermo Ibarra Ibarra». CDMX, México.

DOI:

https://doi.org/10.35366/112694

Keywords:

taekwondo, motor gesture, sports classification, principal component analysis, artificial neural network

Abstract

Introduction: sports classification is a daily task in the athlete’s life. It is important to relate the results

of the tests performed on a taekwondoin with the efficiency of the execution of their fundamental motor

gesture, the kick, which represents 80% of the activity in competition. Objective: the aim is to have a

tool that allows to identify and classify the most sensitive variables (anthropometric and physiological)

and relate them to the sports efficiency of a sample of taekwondo athletes from Mexico City. Material

and methods: descriptive cross-sectional study for the analysis of 202 variables gathered from 74

evaluations towards the identification of those with the greatest variability, to stratify the population

using principal component analysis and to classify it into four levels of aptitude, using an artificial neural

network. Results: athletes characterization, identifying weaknesses and strengths, was performed

by the representation of more than 50% of the information contained in 19 parameters that are

obtained from the data to represent the study population and limit points with statistical significance.

Classification efficiency was 87.5%. Conclusion: the use of technology tools in the analysis of data

and classification based on artificial intelligence is a different proposal that seeks to emulate the work

done by coaches in the process of classifying athletes.

References

Besson T, Macchi R, Rossi J, Morio CYM, Kunimasa

Y, Nicol C et al. Sex differences in endurance running.

Sports Med. 2022; 52 (6): 1235-1257.

Tharawadeepimuk K, Wongsawat Y. Quantitative EEG in

sports: performance level estimation of professional female

soccer players. Health Inf Sci Syst. 2021; 9 (1): 14.

Burke LM. Nutritional approaches to counter performance

constraints in high-level sports competition. Exp Physiol.

; 106 (12): 2304-2323.

McHugh C, Hind K, O’Halloran A, Davey D, Farrell G,

Wilson F. Body mass and body composition changes

over 7 years in a male professional rugby union team.

Int J Sports Med. 2021; 42 (13): 1191-1198.

El-Ashker S, Chaabene H, Prieske O. Maximal isokinetic

elbow and knee flexor-extensor strength measures in

combat sports athletes: the role of movement velocity

and limb side. BMC Sports Sci Med Rehabil. 2022; 14

(1): 40.

Blanco Ortega A, Isidro Godoy J, Szwedowicz Wasik DS,

Martínez Rayón E, Cortés García C, Ramón Azcaray

Rivera H et al. Biomechanics of the upper limbs: a

review in the sports combat ambit highlighting wearable

sensors. Sensors (Basel). 2022; 22 (13): 4905.

Zemková E, Zapletalová L. The role of neuromuscular

control of postural and core stability in functional

movement and athlete performance. Front Physiol.

; 13: 796097.

Richter K, Mushett CA, Ferrara MS, McCann C.

Integrated classification: a faulted system. Adapt Phys

Activ Q. 1992; 9: 5-13.

Bridge CA, Ferreira da Silva Santos J, Chaabene

H, Pieter W, Franchini E. Physical and physiological

profiles of taekwondo athletes. Sports Med. 2014; 44

(6): 713-733.

Hailong L. Role of artificial intelligence algorithm for

taekwondo teaching effect evaluation model. 2021; 40

(2): 3239-3250.

Weian L, Xiaotao L. Application and analysis of

taekwondo techniques, tactics, and movement

trajectories based on multi-intelligent decision making.

Math Probl Eng. 2022; 8411550.

Dharmmesta RA, Jaya IGP, Rizal A, Istiqomah.

Classification of foot kicks in taekwondo using SVM

(support vector machine) and KNN (K-nearest neighbors)

algorithms. 2022 IEEE International Conference on

Industry 4.0, Artificial Intelligence, and Communications

Technology (IAICT). Bali, Indonesia: 2022. pp. 36-41.

Ke Y. Research on the application of artificial intelligence

in taekwondo sport. 2021 2nd International Conference on

Big Data & Artificial Intelligence & Software Engineering

(ICBASE). Zhuhai, China: 2021. pp. 571-574.

Published

2023-12-31

How to Cite

1.
Franco-Sánchez JG, Pegueros-Pérez A, Puig-Hernández HR, Mirabent-Amor D, Figueroa-Cavero F, Vega-Martínez G, et al. Principal components analysis for the identification of sensitive variables in the execution of the motor gesture and the development of an artificial neural network as an auxiliary tool in the classification of sports performance in elite taekwondo athle. InDiscap [Internet]. 2023 Dec. 31 [cited 2024 Nov. 14];9(3):91-101. Available from: https://dsm.inr.gob.mx/indiscap/index.php/INDISCAP/article/view/44

Issue

Section

Original articles

Most read articles by the same author(s)

Similar Articles

<< < 1 2 3 4 5 6 7 > >> 

You may also start an advanced similarity search for this article.