Early cranial nerve dysfunction is correlated to altered facial morphology in spinocerebellar ataxia type 2

Authors

  • Jacqueline Medrano-Montero
  • Luis Velázquez-Pérez
  • Roberto Rodríguez-Labrada
  • Nalia Canales-Ochoa
  • Arnoy Peña-Acosta
  • Luis E Almaguer-Mederos
  • Annelies Estupiñan-Rodríguez
  • Georg Auburger

Keywords:

SCA2, Motor performance, hereditary ataxia, spinocerebellar ataxia type 2, olivo-ponto-cerbellar atrophy

Abstract

The aim of our cross-sectional study was to quantify trigeminal and facial nerve electrophysiological alterations and to determine its correlation with facial morphology abnormalities and
expanded CAG repeats in Spinocerebellar ataxia type 2 (SCA2). 90 SCA2 patients and 41
preclinical mutation carriers together with 100 sex-, age- and facial type- matched healthy
subjects as controls were assessed by facial motor nerve conduction, blink reflex (BR) and
mandibular reflex (jaw jerk. Facial morphology features were analyzed by the determination of
the facial type using a standardized morphometric facial index and the measurement of three
distinct planes over pictures. Patients exhibited a significant prolongation of latency and duration and decreased amplitude in the facial motor potentials. The mandibular reflex revealed
prolonged latency and decreased amplitude. Moreover, the bilateral R2 component of the blink
reflex was prolonged. Preclinical carriers showed prolonged duration for facial nerve potentials
and mandibular reflex, as well as increased latency of bilateral R2 BR component. Facial
morphology measures revealed periorbital, perioral and masseter alterations in patient and
preclinical groups, and some of them were correlated to the electrophysiological features and
expanded CAG repeats.
These electrophysiological and morphological features widen the prodromal phenotype of
SCA2, and offer new clues about the role of ATXN2 mutations for muscle atrophy, neuronal
energy balance and lipid metabolism.

References

Wadia NH, Swami RK. A new form of heredofamilial spinocerebellar degeneration with slow

eye movements (nine families). Brain 1971;

(2):359-74.

ttps://doi.org/10.1093/brain/94.2.359.

Auburger G, Diaz GO, Capote RF, Sanchez

SG, Perez MP, del Cueto ME, et al. Autosomal

dominant ataxia: genetic evidence for locus heterogeneity from a Cuban founder-effect population. Am J Hum Genet 1990; 46(6): 1163-77.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC

/.

Hernández A1, Magariño C, Gispert S, Santos

N, Lunkes A, Orozco G. Genetic mapping of

the spinocerebellar ataxia 2 (SCA2) locus on

chromosome 12q23-q24.1. Genomics 1995;

(2):433-5.

http://www.sciencedirect.com/science/article/pii

/088875439580043L.

Gispert S, A Lunkes, N Santos, G Orozco, D

Ha-Hao, T Ratzlaff, et al. Localization of the

candidate gene D-amino acid oxidase outside

the refined I-cM region of spinocerebellar ataxia 2. Am J Hum Genet 1995; 57(4): 972-5.

https://www.ncbi.nlm.nih.gov/pmc/?term=Gispe

rt-S+et+al+1993+Nat+Genet.

Pulst SM, Nechiporuk A, Nechiporuk T, Gispert

S, Chen XN, Lopes-Cendes I, et al. Moderate

expansion of a normally biallelic trinucleotide

repeat in spinocerebellar ataxia type 2. Nat

Genet 1996; 14(3): 269-76.

https://www.ncbi.nlm.nih.gov/pubmed/?term=P

ulst-SM+et+al+1996+Nat+Genet.

Sanpei K, Takano H, Igarashi S, Sato T, Oyake

M, Sasaki H, et al. Identification of the spinocerebellar ataxia type 2 gene using a direct identification of repeat expansion and cloning technique, DIRECT. Nat Genet 1996; 14(3): 277-

https://www.ncbi.nlm.nih.gov/pubmed/8896556

Velázquez L. Ataxia Espinocerebelosa tipo 2.

Diagnóstico, pronóstico y evolución. 3 ed. La

Habana: Editorial Ciencias Médicas 2012.

http://www.bvscuba.sld.cu/libro/ataxiaespinocerebelosa-tipo-2-diagnosticopronostico-y-evolucion/.

Velázquez-Pérez L, Fernandez-Ruiz J, Díaz R,

Pérez-González R, Canales ON, Sánchez CG,

et al. Spinocerebellar ataxia type 2 olfactory

impairment shows a pattern similar to other

major neurodegenerative diseases. J Neurol

; 253: 1165-9. DOI 10.1007/s00415-006-

-2.

Velázquez PL, Rodríguez LR, Sánchez CG,

Laffita MJM, Almaguer ML, Aguilera RR, et al

Comprehensive characterization of spinocerebellar ataxia type 2 in Cuba and its application

in intervention projects. Rev Cub.Salud Pública

[serial on the Internet]. 2011; 37(3): 230-44.

http:// dx. doi. org/10.1590/S0864-346620

Velázquez-Pérez L, Seifried C, Santos-Falcón

N, Abele M, Ziemann U, Almaguer LE, et al.

Saccade velocity is controlled by polyglutamine

size in spinocerebellar ataxia 2. Ann Neurol

; 56(3): 444-7.

http://onlinelibrary.wiley.com/doi/10.1002/ana.2

/pdf.

Velázquez PL, Seifried C, Abele M, Wirjatijasa

F, Rodríguez LR, Santos FN, Sánchez CG,

Almaguer ML, et al. Saccade velocity is reduced in presymptomatic spinocerebellar ataxia

type 2. Clin Neurophysiol 2009; 120(3): 632-5.

doi: 10.1016/j.clinph.2008.12.040.

https://www.ncbi.nlm.nih.gov/pubmed/.

Paneque M, Lemos C, Sousa A, Velázquez L,

Fleming M, Sequeiros J. Role of the Disease in

the Psychological Impact of Pre-Symptomatic

Testing for SCA2 and FAP ATTRV30M: Experience with the Disease, Kinship and Gender of

the Transmitting Parent. J Genet Couns 2009;

(5): 483-93. doi: 10.1007/s10897-009-9240-

Rodríguez-Labrada R, Velázquez-Pérez L,

Seigfried C, Canales-Ochoa N, Auburger G,

Medrano-Montero J, et al. Saccadic latency is

prolonged in Spinocerebellar Ataxia type 2 and

correlates with the frontal-executive dysfunctions. J Neurol Sci 2011; 306 (1-2): 103-7. doi:

1016/j.jns.2011.03.033.

Rodríguez-Labrada R, Velázquez-Pérez L,

Auburger G, Ziemann U, Canales-Ochoa N,

Medrano-Montero J, et al. Spinocerebellar ataxia type 2: Measures of saccade changes improve power for clinical trials. Mov Disord

; 31(4):570-8. doi: 10.1002/mds.26532.

http://onlinelibrary.wiley.com/doi/10.1002/mds.

/epdf.

Almaguer-Mederos LE, Aguilera Rodríguez R,

González Zaldivar Y, Almaguer Gotay D, Cuello Almarales D, Laffita Mesa J, et al. Estimation of survival in spinocerebellar ataxia type 2

Cuban patients. Clin Genet 2013; 83(3): 293-4.

doi: 10.1111/j.1399-0004.2012.01902.x.

http://onlinelibrary.wiley.com/doi/10.1111/j.139

-0004.2012.01902.x/epdf.

Almaguer-Mederos LE, Falcón NS, Almira YR,

Zaldivar YG, Almarales DC, Góngora EM, et al.

Estimation of the age at onset in spinocerebellar ataxia type 2 Cuban patients by survival

analysis. Clin Genet 2010; 78(2):169-74. doi:

1111/j.1399-0004.2009.01358.x.

http://onlinelibrary.wiley.com/doi/10.1111/j.139

-0004.2009.01358.x/epdf

Velázquez-Pérez L, Rodríguez-Labrada R,

García-Rodríguez JC, Almaguer-Mederos LE,

Cruz-Mariño T, Laffita-Mesa JM. A Comprehensive Review of Spinocerebellar Ataxia

Type 2 in Cuba. Cerebellum 2011; 10(2):184-

doi: 10.1007/s12311-011-0265-2.

https://link.springer.com/article/10.1007%2Fs1

-011-0265-2.

Rodríguez-Labrada R, Velázquez-Perez L,

Canales ON, Galicia PL, Haro VR, Sanchez

CG, et al. Subtle Rapid Eye Movement Sleep

Abnormalities in Presymptomatic Spinocerebellar Ataxia Type 2 Gene Carriers. Mov Disord

; 26(2): 347-50. doi: 10.1002/mds.23409.

Auburger GWJ. Spinocerebellar ataxia type 2.

In: Subramony SH, Dürr A, editors. Handbook

of Clinical Neurology. Ataxic Disorders. Vol.

(3rd series), 2012, p. 423-36.

doi:10.1016/B978-0-444-51892-7.00026-7

Della NR, Foresti S, Tessa C, Moretti M, Ginestroni A, Gavazzi C, et al. ADC mapping of

neurodegeneration in the brainstem and cerebellum of patients with progressive ataxias.

Neuroimage 2004; 22(2): 698-705. DOI:

1016/j.neuroimage.2004.01.035.

Mohit H, Bhalt Richard F, Donad B. Chronic

Cerebellar Degeneration. In: Textbook of Internal Medicine. William N. Kelley. 2da ed. Lippincott Company (Ed), Philadelphia, New York

, pp 2176-7

Orozco G, Nodarse A, Cordoves R, Auburger

G. Autosomal dominant cerebellar ataxia: Clinical analysis of 263 patients from a homogeneous population in Holguin, Cuba. Neurology

; 40(9):1369-75.

Estrada R, Galarraga J, Orozco G, Nodarse A,

Auburger G. Spinocerebellar ataxia 2 (SCA2):

Morphometric analyses in 11 autopsies characterize it as an olivo-ponto-cerebellar atrophy

(OPCA) plus. Acta Neuropathol 1999; 97(3):

-10.

https://doi.org/10.1007/s004010050989.

Rüb U, Schultz C, Del Tredici K, Gierga K,

Reifenberger G, de Vos RA, et al. Anatomically

based guidelines for systematic investigation of

the central somatosensory system and their

application to a spinocerebellar ataxia type 2

(SCA2) patient. Neuropathol Appl Neurobiol

; 29(5): 418-33.

https://onlinelibrary.wiley.com/doi/epdf/10.1046

/j.1365-2990.2003.00504.x.

Rüb U, Bürk K, Schöls L, Brunt ER, de Vos

RA, Diaz GO, et al. Damage to the reticulotegmental nucleus of the pons in spinocerebellar ataxia type 1, 2, and 3. Neurology 2004;

(7): 1258-63

Rüb U, Gierga K, Brunt ER, de Vos RA, Bauer

M, Schöls L, et al. Spinocerebellar ataxias

types 2 and 3: degeneration of the precerebellar nuclei isolates the three phylogenetically defined regions of the cerebellum. J

Neural Transm 2005; 112(11): 1523-45. DOI

1007/s00702-005-0287-3.

Rüb U, Schöls L, Paulson H, Auburger G,

Kermer P, Jen JC, et al. Clinical features, neurogenetics and neuropathology of the polyglutamine spinocerebellar ataxias type 1, 2, 3, 6

and 7. Prog Neurobiol 2013; 104: 38-66. doi:

1016/j.pneurobio.2013.01.001.

Gierga K, Buró K, Bauer M, Orozco DG, Auburger G, Schultz C, et al. Involvement of the

cranial nerves and their nuclei in spinocerebellar ataxia type 2 SCA2). Acta Neuropathol

; 109(6): 617-31. DOI: 10.1007/s00401-

-1014-8

Lastres-Becker I, Brodesser S, Lütjohann D,

Azizov M, Buchmann J, Hintermann E, et al.

Insulin receptor and lipid metabolism pathology

in ataxin-2 knock-out mice. Hum Mol Genet

; 17(10):1465-81. doi:

1093/hmg/ddn035.

Hoche F, Balikó L, den Dunnen W, Steinecker

K, Bartos L, Sáfrány E, et al. Spinocerebellar

Ataxia Type 2 (SCA2): Identification of Early

Brain Degeneration in One Monozygous Twin

in the Initial Disease Stage. Cerebellum 2011;

(2): 245-53. doi: 10.1007/s12311-010-0239-

Seidel G, Meierhofer D, Şen NE, Guenther A,

Krobitsch S, Auburger G. Quantitative Global

Proteomics of Yeast PBP1 Deletion Mutants

and Their Stress Responses Identifies Glucose

Metabolism, Mitochondrial, and Stress Granule

Changes. J Proteome Res 2017; 16(2): 504-

doi: 10.1021/acs.jproteome.6b00647.

Zhang B, Li L, Chen L, Huang J. Clinical manifestations and gene mutation in a case of Machado-Joseph disease. Neural Regen Res

; 7(35): 2842-7.

http://doi.org/10.3969/j.issn.1673-

2012.35.013

Bettencourt C, Lima M. Machado-Joseph Disease: from first descriptions to new perspectives. Orphanet J Rare Dis 2011; 6: 35. doi:

1186/1750-1172-6-35.

Paulson H. Machado-Joseph Disease/Spinocerebellar Ataxia Type 3. Handb Clin

Neurol 2012; 103: 437-49. doi: 10.1016/B978-

-444-51892-7.00027-9.

Trouillas P, Takayanagi T, Hallett M, Currier

RD, Subramony SH, Wessel K, et al. International Cooperative Ataxia Rating Scale for

pharmacological assessment of the cerebellar

syndrome. J Neurol Sci 1997; 145(2): 205-11.

http://dx.doi.org/10.1016/S0022-

X(96)00231-6.

Kimura J. Electrodiagnosis in Diseases of Nerve and Muscle: principles and practice. 3er ed.

Oxford university. Press; 2001. ISBN-10:

ISBN-13: 9780195129779.

Ward RE. Facial morphology as determined by

anthropometry: keeping it simple. J Craniofac

Genet Dev Biol 1989; 9(1): 45-60.

Mayoral J, Mayoral G. Principios fundamentales y práctica. Científico Técnica, La Habana:

Imbert G, Saudou F, Yvert G, Devys D, Trottier

Y, Garnier JM, et al. Cloning of the gene for

spinocerebellar ataxia 2 reveals a locus with

high sensitivity to expanded CAG/glutamine

repeats. Nat Genet 1996; 14(3): 285-91. DOI:

1038/ng1196-285

Medrano Montero J, Velázquez Pérez LC,

Canales Ochoa N, Almaguer Mederos LE.

Electrophysiological nerves pattern in patients

and asymptomatic carriers with Spinocerebellar Ataxia type 2 (SCA2). Society Proceedings

/ Clinical Neurophysiology 2008; 119; e99–

e164. doi:10.1016/j.clinph.2008.04.158

Jacobi H, Hauser TK, Giunti P, Globas C,

Bauer P, Schmitz-Hübsch T, et al. Spinocerebellar ataxia types 1, 2, 3 and 6: the Clinical

spectrum of ataxia and morphometric brainstem and cerebellar findings. Cerebellum 2012;

(1): 155-66. doi: 10.1007/s12311-011-0292-

z.

Klockgether T. Ataxias. In: Goetz CG editors.

Textbook of Clinical Neurology. 3rd ed, Philadelphia: Saunders an imprint of Elsevier Inc

(Ed); 2007. ISBN: 9781416036180.

Geiner S, Horn AK, Wadia NH, Sakai H, Büttner-Ennever JA. The neuroanatomical basis of

slow saccades in spinocerebellar ataxia type 2

(Wadia-subtype). Prog Brain Res 2008; 171:

–81. doi: 10.1016/S0079-6123(08)00683-3.

Velázquez-Pérez L, Rodríguez-Labrada R,

Canales-Ochoa N, Montero JM, Sánchez-Cruz

G, Aguilera-Rodríguez R, et al. Progression of

early features of spinocerebellar ataxia type 2

in individuals at risk: a longitudinal study. Lancet Neurol 2014; 13 (5): 482-9.

http://dx.doi.org/10.1016/S1474-

(14)70027-4.

Velázquez-Pérez L, Rodríguez-Labrada R,

Torres-Vega R, Medrano-Montero J, VázquezMojena Y, Auburger G, et al. Abnormal corticospinal tract function and motor cortex excitability in non-ataxic SCA2 mutation carriers: A

TMS study. Clin Neurophysiol 2016; 127(8):

-9. doi: 10.1016/j.clinph.2016.05.003.

Velázquez-Pérez L, Rodríguez-Labrada R,

Torres-Vega R, Montero JM, Vázquez-Mojena

Y, Auburger G, et al. Central motor conduction

time as prodromal biomarker in spinocerebellar

ataxia type 2. Mov Disord 2016; 31(4):603-

doi: 10.1002/mds.26555.

Velázquez-Pérez L, Tünnerhoff J, RodríguezLabrada R, Torres-Vega R, Belardinelli P, Medrano-Montero J, et al. Corticomuscular Coherence: a Novel Tool to Assess the Pyramidal

Tract Dysfunction in Spinocerebellar Ataxia

Type 2. Cerebellum 2017; 16(2): 602-6. DOI

1007/s12311-016-0827-4

Velázquez-Pérez L, Sanchez Cruz G, Canales

Ochoa N, et al. Electrophysiological features in

patients and presymptomatic relatives with

spinocerebellar ataxia type 2. J Neurol Sci

; 263:158-64.

http://www.pubpdf.com/pub/17706249/Electrop

hysiological-features-in-patients-andpresymptomatic-relatives-with-spinocerebellarataxia-t.

Halbach-MV, Gispert S, Stehning T, Damrath

E, Walter M, Auburger G. Atxn2 Knockout and

CAG42-Knock-in Cerebellum Shows Similarly

Dysregulated Expression in Calcium Homeostasis Pathway. Cerebellum 2017; 16(1): 68-81.

doi: 10.1007/s12311-016-0762-

https://www.ncbi.nlm.nih.gov/labs/articles/26

/.

Schöls L, Reimold M, Seidel K, Globas C, Brockmann K, Hauser TK , et al. No parkinsonism

in SCA2 and SCA3 despite severe neurodegeneration of the dopaminergic substantia nigra.

Brain 2015; 138(Pt 11):3316-26. doi:

1093/brain/awv255.

Schöls L, Gispert S, Vorgerd M, Menezes Vieira-Saecker AM, Blanke P, Auburger G , et al.

Spinocerebellar ataxia type 2. Genotype and

phenotype in German kindreds. Arch Neurol

; 54(9):1073-80.

doi:10.1001/archneur.1997.00550210011007.

Damrath E, Heck MV, Gispert S, Azizov M,

Nowock J, Seifried C, et al. ATXN2-CAG42

Sequesters PABPC1 Into Insolubility and Induces FBXW8 in Cerebellum of Old Ataxic

Knock-In Mice. PLoS Genet 2012;

(8):e1002920. doi:

1371/journal.pgen.1002920.

Riess O, Laccone FA, Gispert S, Schöls L,

Zühlke C, Vieira-Saecker AM, et al. SCA2 tri

Neurogenetics 1997; 1(1): 59-64.

https://www.ncbi.nlm.nih.gov/pubmed/1073527

Elden AC, Kim HJ, Hart MP, Chen-Plotkin AS,

Johnson BS, Fang X, et al. Ataxin-2 intermediate-length polyglutamine expansions are associated with increased risk for ALS. Nature

; 26; 466(7310): 1069-75. doi:

1038/nature09320.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC

/.

Lee T, Li YR, Ingre C, Weber M, Grehl T, Gredal O, et al. Ataxin-2 intermediate-length

polyglutamine expansions in European ALS

patients. Hum Mol Genet 2011; 20(9): 1697-

doi: 10.1093/hmg/ddr045.

Gispert S, Kurz A, Waibel S, Bauer P, Liepelt I,

Geisen C, et al. The modulation of Amyotrophic Lateral Sclerosis risk by ataxin-2 intermediate polyglutamine expansions is a specific effect. Neurobiol Dis 2012; 45(1): 356-61. doi:

1016/j.nbd.2011.08.021.

Lahut S, Ömür Ö, Uyan Ö, Ağım ZS, Özoğuz

A, Parman Y, et al. ATXN2 and its neighbouring gene SH2B3 are associated with increased ALS risk in the Turkish population.

PLoS One 2012; 7(8): e42956. doi:

1371/journal.pone.0042956.

Dansithong W, Paul S, Figueroa KP, Rinehart

MD, Wiest S, Pflieger LT, et al. Ataxin-2 regulates RGS8 translation in a new BAC-SCA2

transgenic mouse model. PLoS Genet 2015;

(4): e1005182. doi:

1371/journal.pgen.1005182.

Jiménez-López D, Guzmán P. Insights into the

evolution and domain structure of Ataxin-2 proteins across eukaryotes. BMC Res Notes

; 7: 453. doi: 10.1186/1756-0500-7-453.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC

/.

Jiménez-López D, Bravo J, Guzmán P. Evolutionary history exposes radical diversification

among classes of interaction partners of the

MLLE domain of plant poly(A)-binding proteins.

BMC Evol Biol 2015; 15: 195. doi:

1186/s12862-015-0475-1.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC

/.

Ralser M, Albrecht M, Nonhoff U, Lengauer T,

Lehrach H, Krobitsch S. An integrative approach to gain insights into the cellular function

of human ataxin-2. J Mol Biol 2005; 346(1):

-14. DOI: 10.1016/j.jmb.2004.11.024

Satterfield TF, Jackson SM, Pallanck LJ. A

Drosophila homolog of the polyglutamine disease gene SCA2 is a dosage-sensitive regulator of actin filament formation. Genetics 2002;

(4): 1687-702.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC

/pdf/12524342.pdf.

Meierhofer D, Halbach M, Şen NE, Gispert S,

Auburger G. Ataxin-2 (Atxn2)-Knock-Out Mice

Show Branched Chain Amino Acids and Fatty

Acids Pathway Alterations. Mol Cell Proteomics 2016; 15(5): 1728-39. doi:

1074/mcp.M115.056770.

http://www.mcponline.org/content/15/5/1728.lo

ng.

Auburger G, Gispert S, Lahut S, Omür O,

Damrath E, Heck M, et al. 12q24 locus association with type 1 diabetes: SH2B3 or ATXN2?

World J Diabetes 2014; 5(3): 316-27. doi:

4239/wjd.v5.i3.316.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC

/.

Lastres-Becker I, Rüb U, Auburger G. Spinocerebellar ataxia 2 (SCA2). Cerebellum 2008;

(2): 115-24. doi: 10.1007/s12311-008-0019-y.

Kiehl TR, Nechiporuk A, Figueroa KP, Keating

MT, Huynh DP, Pulst SM. Generation and characterization of Sca2 (ataxin-2) knockout mice.

Biochem Biophys Res Commun 2006;

(1):17-24. DOI: 10.1016/j.bbrc.2005.10.186

Lastres-Becker I, Nonis D, Eich F, Klinkenberg

M, Gorospe M, Kötter P, et al. Mammalian ataxin-2 modulates translation control at the preinitiation complex via PI3K/mTOR and is induced by starvation. Biochim Biophys Acta 2016;

(9): 1558-69. doi:

1016/j.bbadis.2016.05.017.

Drost J, Nonis D, Eich F, Leske O, Damrath E,

Brunt ER, et al. Ataxin-2 modulates the levels

of Grb2 and SRC but not ras signaling. J Mol

Neurosci 2013; 51(1): 68-81. doi:

1007/s12031-012-9949-4.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC

/

Nonis D, Schmidt MH, van de Loo S, Eich F,

Dikic I, Nowock J, et al. Ataxin-2 associates

with the endocytosis complex and affects EGF

receptor trafficking. Cell Signal 2008;

(10):1725-39. doi:

1016/j.cellsig.2008.05.018.

Ralser M, Nonhoff U, Albrecht M, Lengauer T,

Wanker EE, Lehrach H, et al. Ataxin-2 and

huntingtin interact with endophilin-A complexes

to function in plastin-associated pathways.

Hum Mol Genet 2005; 14(19): 2893-909. DOI:

1093/hmg/ddi321

Takahara T, Maeda T. Transient sequestration

of TORC1 into stress granules during heat

stress. Mol Cell 2012; 47(2): 242-52. doi:

1016/j.molcel.2012.05.019.

DeMille D, Badal BD, Evans JB, Mathis AD,

Anderson JF, Grose JH. PAS kinase is activated by direct SNF1-dependent phosphorylation

and mediates inhibition of TORC1 through the

phosphorylation and activation of Pbp1. Mol

Biol Cell 2015; 26(3): 569-82. doi:

1091/mbc.E14-06-1088.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC

/.

Bar DZ, Charar C, Dorfman J, Yadid T, Tafforeau L, Lafontaine DL, et al. Cell size and fat

content of dietary-restricted Caenorhabditis

elegans are regulated by ATX-2, an mTOR repressor. Proc Natl Acad Sci U S A 2016;

(32): E4620-9. doi:

1073/pnas.1512156113.

Fittschen M, Lastres-Becker I, Halbach MV,

Damrath E, Gispert S, Azizov M, et al. Genetic

ablation of ataxin-2 increases several global

translation factors in their transcript abundance

but decreases translation rate. Neurogenetics

; 16(3): 181-92. doi: 10.1007/s10048-015-

-5.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC

/.

van de Loo S, Eich F, Nonis D, Auburger G,

Nowock J. Ataxin-2 associates with rough endoplasmic reticulum. Exp Neurol 2009; 215(1):

-8. doi: 10.1016/j.expneurol.2008.09.020.

Swisher KD, Parker R. Localization to, and

effects of Pbp1, Pbp4, Lsm12, Dhh1, and Pab1

on stress granules in Saccharomyces cerevisiae. PLoS One 2010; 5(4): e10006. doi:

1371/journal.pone.0010006.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC

/.

Nonhoff U, Ralser M, Welzel F, Piccini I, Balzereit D, Yaspo ML, et al. Ataxin-2 interacts with

the DEAD/H-box RNA helicase DDX6 and interferes with P-bodies and stress granules. Mol

Biol Cell 2007; 18(4): 1385-96. DOI:

1091/mbc.E06-12-1120.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC

/.

Seidel K, Siswanto S, Fredrich M, Bouzrou M,

den Dunnen WF, Özerden I, et al. On the Distribution of Intranuclear and Cytoplasmic

Aggregates in the Brainstem of Patients with

Spinocerebellar Ataxia Type 2 and 3. Brain

Pathol 2017; 27(3): 345-55. doi:

1111/bpa.12412.

Wang X, Chen XJ. A Cytosolic Network

Suppressing Mitochondria-Mediated Proteostatic Stress and Cell Death. Nature 2015;

(7566): 481-4. doi: 10.1038/nature14859.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC

/.

Vianna MC, Poleto DC, Gomes PF, Valente V,

Paçó-Larson ML. Drosophila ataxin-2 gene encodes two differentially expressed isoforms

and its function in larval fat body is crucial for

development of peripheral tissues. FEBS Open

Bio 2016; 6(11): 1040-53. eCollection 2016.

DOI:10.1002/2211-5463.12124.

http://onlinelibrary.wiley.com/doi/10.1002/2211-

12124/epdf.

Sen NE, Drost J, Gispert S, Torres-Odio S,

Damrath E, Klinkenberg M, et al. Search for

SCA2 blood RNA biomarkers highlights Ataxin2 as strong modifier of the mitochondrial factor

PINK1 levels. Neurobiol Dis 2016; 96: 115-26.

doi: 10.1016/j.nbd.2016.09.002.

Mayer C, Windhager S, Schaefer K, Mitteroecker P. BMI and WHR Are Reflected in Female Facial Shape and Texture: A Geometric

Morphometric Image Analysis. PLoS One

; 12(1):e0169336. doi:

1371/journal.pone.0169336.

Krey KF, Dannhauer KH. Morphometric

analysis of facial profile in adults. J Orofac

Orthop 2008; 69(6): 424-36. doi:

1007/s00056-008-8803-3.

Halazonetis DJ. Morphometric correlation between facial soft-tissue profile shape and skeletal pattern in children and adolescents. Am J

Orthod Dentofacial Orthop 2007; 132(4): 450-

DOI: 10.1016/j.ajodo.2005.10.033

Ilankovan V, Soames JV. Morphometric

analysis of orbital, buccal and subcutaneous

fats: their potential in the treatment of enophthalmos. Br J Oral Maxillofac Surg 1995;

(1): 40-2.

Wills AM, Hubbard J, Macklin EA, Glass J,

Tandan R, Simpson EP, et al. Hypercaloric enteral nutrition in patients with amyotrophic lateral sclerosis: a randomised, double-blind, placebo-controlled phase 2 trial. Lancet 2014;

(9934): 2065-72. doi: 10.1016/S0140-

(14)60222-1.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC

/.

Weinberg SM, Parsons TE, Marazita ML,

Maher BS. Heritability of Face Shape in Twins:

A Preliminary Study using 3D Stereophotogrammetry and Geometric Morphometrics.

Dent 2013; 3000 1(1). pii: 14.

Liang S, Wu J, Weinberg SM, Shapiro LG.

Improved detection of landmarks on 3D human

face data. Conf Proc IEEE Eng Med Biol Soc

; 6482-5. doi:

1109/EMBC.2013.6611039.

Kustár A, Forró L, Kalina I, Fazekas F, Honti S,

Makra S, et al. FACE-R--a 3D database of 400

living individuals' full head CT- and face scans

and preliminary GMM analysis for craniofacial

reconstruction. J Forensic Sci 2013; 58(6):

-8. doi: 10.1111/1556-4029.12215.

http://onlinelibrary.wiley.com/doi/10.1111/1556-

12215/pdf.

Wellens HL, Kuijpers-Jagtman AM, Halazonetis DJ. Geometric morphometric analysis of

craniofacial variation, ontogeny and modularity

in a cross-sectional sample of modern humans.

J Anat 2013; 222(4): 397-409. doi:

1111/joa.12027.

httSP://www.ncbi.nlm.nih.gov/pmc/artiLCes/PM

C3610033/pdf/joa0222-0397.pd

Downloads

Published

2024-07-12

How to Cite

1.
Medrano-Montero J, Velázquez-Pérez L, Rodríguez-Labrada R, Canales-Ochoa N, Peña-Acosta A, Almaguer-Mederos LE, et al. Early cranial nerve dysfunction is correlated to altered facial morphology in spinocerebellar ataxia type 2. InDiscap [Internet]. 2024 Jul. 12 [cited 2024 Sep. 19];7(2):53-66. Available from: https://dsm.inr.gob.mx/indiscap/index.php/INDISCAP/article/view/106

Issue

Section

Original articles

Similar Articles

<< < 1 2 3 4 

You may also start an advanced similarity search for this article.