Gout, a current metabolic disease: comorbidities and new therapies
DOI:
https://doi.org/10.35366/118260Keywords:
hyperuricemia, urate transporters, Uric acid, obesity, goutAbstract
Gout is a multifactorial metabolic disease associated with metabolic syndrome, obesity, hypertension and hypertriglyceridemia. Traditional treatment is focused, for a long time, on controlling clinical manifestations such as acute pain, redness and edema of the patient, through the use of uric acid synthesis inhibitors, colchicine and non- teroidal anti-inflammatory drugs. Currently, new medications focused on the control of excretion- eabsorption of uric acid and the treatment of comorbidities of the disease are being considered [1, 2].
In Mexico, in recent years hyperuricemia and hypertension have increased along with obesity and diabetes, both in children and adults. This review is aimed at showing the importance of treating comorbidities in patients with gout as an important part of preventing and combating the disease while controlling inflammation and hyperuricemia. At the biggest cities of American continent, obesity, diabetes and cardiovascular diseases represent a health problem and it is important to consider that the prevalence of gout may increase rapidly in the coming years. The correct diagnosis and follow-up of the patient is essential to control the disease, so recognizing gout as a multifactorial disease, where there are various factors that favor inflammation, will help design better therapeutic trategies.
References
Cohen, R.E., M.H. Pillinger, and M. Toprover, Something Old, Something New: the ACR Gout Treatment Guideline and Its Evolution from 2012 to 2020. Curr Rheumatol Rep, 2020. 23(1): p. 4.
Afinogenova, Y., A. Danve, and T. Neogi, Update on gout management: what is old and what is new. Curr Opin Rheumatol, 2022. 34(2): p. 118-124.
Kuo, C.F., et al., Global epidemiology of gout: prevalence, incidence and risk factors. Nat Rev Rheumatol, 2015. 11(11): p. 649-62.
Dehlin, M., L. Jacobsson, and E. Roddy, Global epidemiology of gout: prevalence, incidence, treatment patterns and risk factors. Nat Rev Rheumatol, 2020. 16(7): p. 380-390.
Danve, A., S.T. Sehra, and T. Neogi, Role of diet in hyperuricemia and gout. Best Pract Res Clin Rheumatol, 2021. 35(4): p. 101723.
Hernandez-Cuevas, C.B., et al., First acute gout attacks commonly precede features of the metabolic syndrome. J Clin Rheumatol, 2009. 15(2): p. 65-7.
Witt, M. and H. Schulze-Koops, [Hyperuricemia and gout : New aspects of an old disease]. Internist (Berl), 2016. 57(7): p. 656-65.
Singh, G., B. Lingala, and A. Mithal, Gout and hyperuricaemia in the USA: prevalence and trends. Rheumatology (Oxford), 2019. 58(12): p. 2177-2180.
Pelaez-Ballestas, I., et al., Epidemiology of the rheumatic diseases in Mexico. A study of 5 regions based on the COPCORD methodology. J Rheumatol Suppl, 2011. 86: p. 3-8.
Garcia-Mendez, S., et al., Frequency of gout according to the perception of physicians in Mexico. Reumatol Clin, 2014. 10(3): p. 197-8.
Chen-Xu, M., et al., Contemporary Prevalence of Gout and Hyperuricemia in the United States and Decadal Trends: The National Health and Nutrition Examination Survey, 2007-2016. Arthritis Rheumatol, 2019. 71(6): p. 991-999.
Natsuko, P.D., et al., Differential gene expression of ABCG2, SLC22A12, IL-1beta, and ALPK1 in peripheral blood leukocytes of primary gout patients with hyperuricemia and their comorbidities: a case-control study. Eur J Med Res, 2022. 27(1): p. 62.
Perez-Ruiz, F., et al., Clinical manifestations and diagnosis of gout. Rheum Dis Clin North Am, 2014. 40(2): p. 193-206.
Eggebeen, A.T., Gout: an update. Am Fam Physician, 2007. 76(6): p. 801-8.
Ahmad, M.I., et al., Urate Crystals; Beyond Joints. Front Med (Lausanne), 2021. 8: p. 649505.
Yakupova, S.P., Gout. New opportunities of diagnosis and treatment. Ter Arkh, 2018. 90(5): p. 88-92.
Obesity: preventing and managing the global epidemic. Report of a WHO consultation. World Health Organ Tech Rep Ser, 2000. 894: p. i-xii, 1-253.
Thottam, G.E., S. Krasnokutsky, and M.H. Pillinger, Gout and Metabolic Syndrome: a Tangled Web. Curr Rheumatol Rep, 2017. 19(10): p. 60.
Sumpter, N.A., et al., Comorbidities in gout and hyperuricemia: causality or epiphenomena? Curr Opin Rheumatol, 2020. 32(2): p. 126-133.
Choi, H.K., N. McCormick, and C. Yokose, Excess comorbidities in gout: the causal paradigm and pleiotropic approaches to care. Nat Rev Rheumatol, 2022. 18(2): p. 97-111.
Kimura, Y., D. Tsukui, and H. Kono, Uric Acid in Inflammation and the Pathogenesis of Atherosclerosis. Int J Mol Sci, 2021. 22(22).
Choi, H.K., et al., Obesity, weight change, hypertension, diuretic use, and risk of gout in men: the health professionals follow-up study. Arch Intern Med, 2005. 165(7): p. 742-8.
Juraschek, S.P., E.R. Miller, 3rd, and A.C. Gelber, Body mass index, obesity, and prevalent gout in the United States in 1988-1994 and 2007-2010. Arthritis Care Res (Hoboken), 2013. 65(1): p. 127-32.
Kedar, E. and P.A. Simkin, A perspective on diet and gout. Adv Chronic Kidney Dis, 2012. 19(6): p. 392-7.
Torralba, K.D., E. De Jesus, and S. Rachabattula, The interplay between diet, urate transporters and the risk for gout and hyperuricemia: current and future directions. Int J Rheum Dis, 2012. 15(6): p. 499-506.
Wang, Y., et al., The Association of Food Groups and Consumption Time with Hyperuricemia: The U.S. National Health and Nutrition Examination Survey, 2005-2018. Nutrients, 2023. 15(14).
Rho, Y.H., Y. Zhu, and H.K. Choi, The epidemiology of uric acid and fructose. Semin Nephrol, 2011. 31(5): p. 410-9.
Sanchez-Lozada, L.G., et al., Uric Acid and Hypertension: An Update With Recommendations. Am J Hypertens, 2020. 33(7): p. 583-594.
Zhang, C., et al., Recent advances in fructose intake and risk of hyperuricemia. Biomed Pharmacother, 2020. 131: p. 110795.
Batt, C., et al., Sugar-sweetened beverage consumption: a risk factor for prevalent gout with SLC2A9 genotype-specific effects on serum urate and risk of gout. Ann Rheum Dis, 2014. 73(12): p. 2101-6.
Lukkunaprasit, T., et al., The association between genetic polymorphisms in ABCG2 and SLC2A9 and urate: an updated systematic review and meta-analysis. BMC Med Genet, 2020. 21(1): p. 210.
Mandal, A.K. and D.B. Mount, The molecular physiology of uric acid homeostasis. Annu Rev Physiol, 2015. 77: p. 323-45.
Estiverne, C., A.K. Mandal, and D.B. Mount, Molecular Pathophysiology of Uric Acid Homeostasis. Semin Nephrol, 2020. 40(6): p. 535-549.
Almeida, C., M.C. Neves, and M.G. Freire, Towards the Use of Adsorption Methods for the Removal of Purines from Beer. Molecules, 2021. 26(21).
Cornelis, M.C. and M.R. Munafo, Mendelian Randomization Studies of Coffee and Caffeine Consumption. Nutrients, 2018. 10(10).
Maiuolo, J., et al., Regulation of uric acid metabolism and excretion. Int J Cardiol, 2016. 213: p. 8-14.
Yang, B., et al., New insight into the management of renal excretion and hyperuricemia: Potential therapeutic strategies with natural bioactive compounds. Front Pharmacol, 2022. 13: p. 1026246.
Sakkinen, P.A., et al., Clustering of procoagulation, inflammation, and fibrinolysis variables with metabolic factors in insulin resistance syndrome. Am J Epidemiol, 2000. 152(10): p. 897-907.
Toyoki, D., et al., Insulin stimulates uric acid reabsorption via regulating urate transporter 1 and ATP-binding cassette subfamily G member 2. Am J Physiol Renal Physiol, 2017. 313(3): p. F826-F834.
Nakamura, T., [Historical review of gout and hyperuricemia investigations]. Nihon Rinsho, 2008. 66(4): p. 624-35.
Perez Ruiz, F., [Gout: past, present, and future]. Reumatol Clin, 2011. 7(4): p. 217-9.
Novikov, A., et al., SGLT2 inhibition and renal urate excretion: role of luminal glucose, GLUT9, and URAT1. Am J Physiol Renal Physiol, 2019. 316(1): p. F173-F185.
Arakawa, H., et al., Renal Reabsorptive Transport of Uric Acid Precursor Xanthine by URAT1 and GLUT9. Biol Pharm Bull, 2020. 43(11): p. 1792-1798.
Zhu, W., Y. Deng, and X. Zhou, Multiple Membrane Transporters and Some Immune Regulatory Genes are Major Genetic Factors to Gout. Open Rheumatol J, 2018. 12: p. 94-113.
Garcia-Nieto, V.M., et al., Gout associated with reduced renal excretion of uric acid. Renal tubular disorder that nephrologists do not treat. Nefrologia (Engl Ed), 2022. 42(3): p. 273-279.
Jing, J., et al., Genetics of serum urate concentrations and gout in a high-risk population, patients with chronic kidney disease. Sci Rep, 2018. 8(1): p. 13184.
Lee, C.P., et al., ALPK1 phosphorylates myosin IIA modulating TNF-alpha trafficking in gout flares. Sci Rep, 2016. 6: p. 25740.
Pineda, C., et al., Animal model of acute gout reproduces the inflammatory and ultrasonographic joint changes of human gout. Arthritis Res Ther, 2015. 17(1): p. 37.
Kim, K.W., et al., Reciprocal interaction between macrophage migration inhibitory factor and interleukin-8 in gout. Clin Exp Rheumatol, 2019. 37(2): p. 270-278.
Dalbeth, N., T.R. Merriman, and L.K. Stamp, Gout. Lancet, 2016. 388(10055): p. 2039-2052.
Dalbeth, N., et al., Gout. Lancet, 2021. 397(10287): p. 1843-1855.
Shi, C., et al., Recent advances in gout drugs. Eur J Med Chem, 2023. 245(Pt 1): p. 114890.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra
This work is licensed under a Creative Commons Attribution 4.0 International License.
© Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra under a Creative Commons Attribution 4.0 International (CC BY 4.0) license which allows to reproduce and modify the content if appropiate recognition to the original source is given.