The role of non-coding RNAs in the pathogenesis of myotonic dystrophy type 1

Authors

  • Nadia Mireya Murillo-Melo Laboratory of Genomic Medicine, Department of Genetics, Instituto Nacional de Rehabilitación «Luis Guillermo Ibarra Ibarra». Mexico.
  • Fabiola Vianet Borbolla-Jiménez Laboratory of Genomic Medicine, Department of Genetics, Instituto Nacional de Rehabilitación «Luis Guillermo Ibarra Ibarra». Mexico.
  • Oscar Hernández-Hernández Laboratory of Genomic Medicine, Department of Genetics, Instituto Nacional de Rehabilitación «Luis Guillermo Ibarra Ibarra». Mexico.
  • Jonathan J Magaña Laboratory of Genomic Medicine, Department of Genetics, Instituto Nacional de Rehabilitación «Luis Guillermo Ibarra Ibarra». Mexico.

DOI:

https://doi.org/10.35366/103941

Keywords:

Myotonic dystrophy, ncRNA, miRNAs, lncRNAs, circRNA

Abstract

Myotonic dystrophy type 1 (DM1) is the most common muscular dystrophy in adults with a prevalence
of 1/8,000 worldwide. DM1 is a multisystem disorder with a complex pathophysiology. Spliciopathy is
the mechanism with the greatest impact on the pathogenesis and is also the most studied. However,
other mechanisms like deregulation of non-coding RNAs (ncRNAs) have been described that contribute
to the pathogenesis. ncRNAs, particularly miRNAs, participate in the development, differentiation,
and regeneration of muscle tissue in DM1. The potential role of some miRNAs as DM1 biomarkers
has been revealed from patient’s serum studies. More recent studies, described antisense DM1 RNA,
now classified as a lncRNA, with a potential role in the formation of siRNAs, chromatin modifying,
and RAN translation mechanisms. Nonetheless, lncRNA have not been described in DM1, and it
would therefore be interesting to investigate the role they play in this disease. It appears that ncRNAs
play an important role in DM1, adding new elements to the previously described mechanisms, which
improve our understanding of this complex disease, leaving still a lot to be discovered

References

Pearson CE, Nichol Edamura K, Cleary JD. Repeat

instability: mechanisms of dynamic mutations. Nat Rev

Genet. 2005; 6 (10): 729-742.

de León MB, Cisneros B. Myotonic dystrophy 1 in the

nervous system: from the clinic to molecular mechanisms.

J Neurosci Res. 2008; 86 (1): 18-26.

Udd B, Krahe R. The myotonic dystrophies: molecular,

clinical, and therapeutic challenges. Lancet Neurol. 2012;

(10): 891-905.

Day JW, Ranum LP. RNA pathogenesis of the myotonic

dystrophies. Neuromuscul Disord. 2005; 15 (1): 5-16. doi:

1016/j.nmd.2004.09.012.

Cho DH, Tapscott SJ. Myotonic dystrophy: emerging

mechanisms for DM1 and DM2. Biochim Biophys

Acta. 2007; 1772 (2): 195-204. doi: 10.1016/j.

bbadis.2006.05.013.

Magaña JJ, Leyva-García N, Cisneros B. Pathogenesis

of myotonic dystrophy type 1. Gac Med Mex. 2009; 145

(4): 331-337.

Lin X, Miller JW, Mankodi A, Kanadia RN, Yuan Y, Moxley

RT et al. Failure of MBNL1-dependent post-natal splicing

transitions in myotonic dystrophy. Hum Mol Genet. 2006;

(13): 2087-2097. doi: 10.1093/hmg/ddl132.

Mankodi A, Takahashi MP, Jiang H, Beck CL, Bowers

WJ, Moxley RT et al. Expanded CUG repeats trigger

aberrant splicing of ClC-1 chloride channel pre-mRNA

and hyperexcitability of skeletal muscle in myotonic

dystrophy. Mol Cell. 2002; 10 (1): 35-44.

Du H, Cline MS, Osborne RJ, Tuttle DL, Clark TA,

Donohue JP et al. Aberrant alternative splicing and

extracellular matrix gene expression in mouse models

of myotonic dystrophy. Nat Struct Mol Biol. 2010; 17 (2):

-193. doi: 10.1038/nsmb.1720.

Batra R, Charizanis K, Manchanda M, Mohan A, Li

M, Finn DJ et al. Loss of MBNL leads to disruption of

developmentally regulated alternative polyadenylation in

RNA-mediated disease. Mol Cell. 2014; 56 (2): 311-322.

doi: 10.1016/j.molcel.2014.08.027.

Goodwin M, Mohan A, Batra R, Lee KY, Charizanis K,

Fernández Gómez FJ et al. MBNL sequestration by toxic

RNAs and RNA misprocessing in the myotonic dystrophy

brain. Cell Rep. 2015; 12 (7): 1159-1168. doi: 10.1016/j.

celrep.2015.07.029.

Kalsotra A, Singh RK, Gurha P, Ward AJ, Creighton CJ,

Cooper TA. The Mef2 transcription network is disrupted

in myotonic dystrophy heart tissue, dramatically altering

miRNA and mRNA expression. Cell Rep. 2014; 6 (2):

-345. doi: 10.1016/j.celrep.2013.12.025.

Fernández-Costa JM, Garcia-Lopez A, Zuñiga S,

Fernandez-Pedrosa V, Felipo-Benavent A, Mata M et

al. Expanded CTG repeats trigger miRNA alterations

in Drosophila that are conserved in myotonic dystrophy

type 1 patients. Hum Mol Genet. 2013; 22 (4): 704-716.

doi: 10.1093/hmg/dds478.

Rau F, Freyermuth F, Fugier C, Villemin JP, Fischer

MC, Jost B et al. Misregulation of miR-1 processing is

associated with heart defects in myotonic dystrophy.

Nat Struct Mol Biol. 2011; 18 (7): 840-845. doi: 10.1038/

nsmb.2067.

Moseley ML, Zu T, Ikeda Y, Gao W, Mosemiller AK,

Daughters RS et al. Bidirectional expression of CUG

and CAG expansion transcripts and intranuclear

polyglutamine inclusions in spinocerebellar ataxia type 8.

Nat Genet. 2006; 38 (7): 758-769. doi: 10.1038/ng1827.

Cho DH, Thienes CP, Mahoney SE, Analau E,

Filippova GN, Tapscott SJ. Antisense transcription and

heterochromatin at the DM1 CTG repeats are constrained

by CTCF. Mol Cell. 2005; 20 (3): 483-489. doi: 10.1016/j.

molcel.2005.09.002.

Timchenko NA, Patel R, Iakova P, Cai ZJ, Quan L,

Timchenko LT. Overexpression of CUG triplet repeatbinding protein, CUGBP1, in mice inhibits myogenesis.

J Biol Chem. 2004; 279 (13): 13129-13139. doi: 10.1074/

jbc.M312923200.

Gudde AEEG, van Heeringen SJ, de Oude AI,

van Kessel IDG, Estabrook J, Wang ET et al.

Antisense transcription of the myotonic dystrophy locus

yields low-abundant RNAs with and without (CAG)

n repeat. RNA Biol. 2017; 14 (10): 1374-1388. doi:

1080/15476286.2017.1279787.

Perfetti A, Greco S, Bugiardini E, Cardani R, Gaia P,

Gaetano C et al. Plasma microRNAs as biomarkers for

myotonic dystrophy type 1. Neuromuscul Disord. 2014;

(6): 509-515.

Perbellini R, Greco S, Sarra-Ferraris G, Cardani R,

Capogrossi MC, Meola G, et al. Dysregulation and cellular

mislocalization of specific miRNAs in myotonic dystrophy

type 1. Neuromuscul Disord. 2011; 21 (2): 81-88

Furling D. Misregulation of alternative splicing and

microRNA processing in DM1 pathogenesis. Rinsho

Shinkeigaku. 2012; 52 (11): 1018-1022.

Fritegotto C, Ferrati C, Pegoraro V, Angelini C. MicroRNA expression in muscle and fiber morphometry in

myotonic dystrophy type 1. Neurol Sci. 2017; 38 (4):

-625.

Koutsoulidou A, Kyriakides TC, Papadimas GK, Christou

Y, Kararizou E, Papanicolaou EZ et al. Elevated musclespecific miRNAs in serum of myotonic dystrophy patients

relate to muscle disease progress. PLoS One. 2015; 10

(4): e0125341.

Sicot G, Gourdon G, Gomes-Pereira M. Myotonic

dystrophy, when simple repeats reveal complex

pathogenic entities: new findings and future challenges.

Hum Mol Genet. 2011; 20 (R2): R116-R123.

Chen Y, Zhou J. LncRNAs: macromolecules with big

roles in neurobiology and neurological diseases. Metab

Brain Dis. 2017; 32 (2): 281-291. doi: 10.1007/s11011-

-9965-8.

muscle dystrophies. Int J Mol Sci. 2013; 14 (10): 19681-

doi: 10.3390/ijms141019681.

Wei JW, Huang K, Yang C, Kang CS. Non-coding RNAs

as regulators in epigenetics (Review). Oncol Rep. 2017;

(1): 3-9. doi: 10.3892/or.2016.5236.

Qiu L, Tan EK, Zeng L. microRNAs and neurodegenerative

diseases. Adv Exp Med Biol. 2015; 888: 85-105. doi:

1007/978-3-319-22671-2_6.

Maxmen A. RNA: The genome’s rising stars. Nature.

; 496 (7443): 127-129.

Wang XQ, Crutchley JL, Dostie J. Shaping the genome

with non-coding RNAs. Curr Genomics. 2011; 12 (5):

-321.

Ponting CP, Oliver PL, Reik W. Evolution and functions

of long noncoding RNAs. Cell. 2009; 136 (4): 629-641.

Bartel DP. MicroRNAs: target recognition and regulatory

functions. Cell. 2009; 136 (2): 215-233.

Eisenberg I, Alexander MS, Kunkel LM. miRNAS in

normal and diseased skeletal muscle. J Cell Mol Med.

; 13 (1): 2-11.

Greco S, De Simone M, Colussi C, Zaccagnini G,

Fasanaro P, Pescatori M et al. Common micro-RNA

signature in skeletal muscle damage and regeneration

induced by Duchenne muscular dystrophy and acute

ischemia. FASEB J. 2009; 23 (10): 3335-3346.

Pegoraro V, Cudia P, Baba A, Angelini C. MyomiRNAs

and myostatin as physical rehabilitation biomarkers for

myotonic dystrophy. Neurol Sci. 2020; 41 (10): 2953-

Castanon I, Von Stetina S, Kass J, Baylies MK.

Dimerization partners determine the activity of the Twist

bHLH protein during Drosophila mesoderm development.

Development. 2001; 128 (16): 3145-2159.

Koutalianos D, Koutsoulidou A, Mastroyiannopoulos

NP, Furling D, Phylactou LA. MyoD transcription factor

induces myogenesis by inhibiting Twist-1 through miR206. J Cell Sci. 2015; 128 (19): 3631-3645.

Thum T, Gross C, Fiedler J, Fischer T, Kissler S, Bussen

M et al. MicroRNA-21 contributes to myocardial disease

by stimulating MAP kinase signalling in fibroblasts.

Nature. 2008; 456 (7224): 980-984.

Perfetti A, Greco S, Cardani R, Fossati B, Cuomo G,

Valaperta R et al. Validation of plasma microRNAs as

biomarkers for myotonic dystrophy type 1. Sci Rep. 2016;

: 38174.

Fernández-Costa JM, Llamusi B, Bargiela A, Zulaica

M, Alvarez-Abril MC, Perez-Alonso M et al. Six serum

miRNAs fail to validate as myotonic dystrophy type 1

biomarkers. PLoS One. 2016; 11 (2): e0150501.

Cerro-Herreros E, Fernandez-Costa JM, Sabater-Arcis M,

Llamusi B, Artero R. Derepressing muscleblind expression

by miRNA sponges ameliorates myotonic dystrophy-like

phenotypes in Drosophila. Sci Rep. 2016; 6: 36230.

Azotla-Vilchis CN, Sanchez-Celis D, Agonizantes-Juárez

LE, Suárez-Sánchez R, Hernández-Hernández JM, Peña

J et al. Transcriptome analysis reveals altered inflammatory

pathway in an inducible glial cell model of myotonic

dystrophy type 1. Biomolecules. 2021; 11 (2): 159.

Cappella M, Perfetti A, Cardinali B, Garcia-Manteiga JM,

Carrara M, Provenzano C et al. High-throughput analysis

of the RNA-induced silencing complex in myotonic

dystrophy type 1 patients identifies the dysregulation of

miR-29c and its target ASB2. Cell Death Dis. 2018; 9

(7): 729.

Boissonneault V, Plante I, Rivest S, Provost P.

MicroRNA-298 and microRNA-328 regulate expression

of mouse beta-amyloid precursor protein-converting

enzyme 1. J Biol Chem. 2009; 284 (4): 1971-1981.

Lukiw WJ. Micro-RNA speciation in fetal, adult and

Alzheimer’s disease hippocampus. Neuroreport. 2007;

(3): 297-300.

Martí E, Pantano L, Bañez-Coronel M, Llorens F,

Miñones-Moyano E, Porta S et al. A myriad of miRNA

variants in control and Huntington’s disease brain regions

detected by massively parallel sequencing. Nucleic Acids

Res. 2010; 38 (20): 7219-7235.

Packer AN, Xing Y, Harper SQ, Jones L, Davidson BL.

The bifunctional microRNA miR-9/miR-9* regulates

REST and CoREST and is downregulated in Huntington’s

disease. J Neurosci. 2008; 28 (53): 14341-14346.

Esteller M. Non-coding RNAs in human disease. Nat Rev

Genet. 2011; 12 (12): 861-874.

Wapinski O, Chang HY. Long noncoding RNAs and

human disease. Trends Cell Biol. 2011; 21 (6): 354-361.

Chen X. Predicting lncRNA-disease associations and

constructing lncRNA functional similarity network

based on the information of miRNA. Sci Rep. 2015;

: 13186.

Gudde AE, González-Barriga A, van den Broek WJ,

Wieringa B, Wansink DG. A low absolute number of

expanded transcripts is involved in myotonic dystrophy

type 1 manifestation in muscle. Hum Mol Genet. 2016;

(8): 1648-1662.

Moazed D. Small RNAs in transcriptional gene silencing

and genome defence. Nature. 2009; 457 (7228): 413-420.

Jinek M, Doudna JA. A three-dimensional view of the

molecular machinery of RNA interference. Nature. 2009;

(7228): 405-412.

Morris KV, Chan SW, Jacobsen SE, Looney DJ.

Small interfering RNA-induced transcriptional gene

silencing in human cells. Science. 2004; 305 (5688):

-1292.

Yu Z, Teng X, Bonini NM. Triplet repeat-derived siRNAs

enhance RNA-mediated toxicity in a Drosophila model

for myotonic dystrophy. PLoS Genet. 2011; 7 (3):

e1001340.

Chen LL. The biogenesis and emerging roles of circular

RNAs. Nat Rev Mol Cell Biol. 2016; 17 (4): 205-211.

Xiao MS, Ai Y, Wilusz JE. Biogenesis and Functions of

circular RNAs come into focus. Trends Cell Biol. 2020;

(3): 226-2240.

Czubak K, Sedehizadeh S, Kozlowski P, Wojciechowska

M. An overview of circular RNAs and their implications in

myotonic dystrophy. Int J Mol Sci. 2019; 20 (18): 4385.

Czubak K, Taylor K, Piasecka A, Sobczak K, Kozlowska

K, Philips A et al. Global increase in circular RNA levels

in myotonic dystrophy. Front Genet. 2019; 10: 649.

Voellenkle C, Perfetti A, Carrara M, Fuschi P, Renna

LV, Longo M et al. Dysregulation of circular RNAs in

myotonic dystrophy type 1. Int J Mol Sci. 2019; 20 (8):

Gambardella S, Rinaldi F, Lepore SM, Viola A, Loro E,

Angelini C et al. Overexpression of microRNA-206 in the

skeletal muscle from myotonic dystrophy type 1 patients.

J Transl Med. 2010; 8: 48.

Greco S, Perfetti A, Fasanaro P, Cardani R, Capogrossi

MC, Meola G et al. Deregulated microRNAs in myotonic

dystrophy type 2. PLoS One. 2012; 7 (6): e39732.

Downloads

Published

2022-04-30

How to Cite

1.
Murillo-Melo NM, Borbolla-Jiménez FV, Hernández-Hernández O, Magaña JJ. The role of non-coding RNAs in the pathogenesis of myotonic dystrophy type 1. InDiscap [Internet]. 2022 Apr. 30 [cited 2024 Nov. 24];8(1):29-38. Available from: http://dsm.inr.gob.mx/indiscap/index.php/INDISCAP/article/view/68

Issue

Section

Evidence synthesis and meta-research

Most read articles by the same author(s)

Similar Articles

You may also start an advanced similarity search for this article.