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Early cranial nerve dysfunction is correlated to altered facial
morphology in spinocerebellar ataxia type 2.
Cranial nerves and facial morphology in SCA2

Disfuncion temprana de nervios craneales correlaciona con alteraciones de la
morfologia facial en la ataxia espinocerebelosa tipo 2.
Los nervios craneales y la morfologia facial en SCA2
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Abstract

The aim of our cross-sectional study was to quantify trigeminal and facial nerve electrophysio-
logical alterations and to determine its correlation with facial morphology abnormalities and
expanded CAG repeats in Spinocerebellar ataxia type 2 (SCA2). 90 SCA2 patients and 41
preclinical mutation carriers together with 100 sex-, age- and facial type- matched healthy
subjects as controls were assessed by facial motor nerve conduction, blink reflex (BR) and
mandibular reflex (jaw jerk. Facial morphology features were analyzed by the determination of
the facial type using a standardized morphometric facial index and the measurement of three
distinct planes over pictures. Patients exhibited a significant prolongation of latency and dura-
tion and decreased amplitude in the facial motor potentials. The mandibular reflex revealed
prolonged latency and decreased amplitude. Moreover, the bilateral R2 component of the blink
reflex was prolonged. Preclinical carriers showed prolonged duration for facial nerve potentials
and mandibular reflex, as well as increased latency of bilateral R2 BR component. Facial
morphology measures revealed periorbital, perioral and masseter alterations in patient and
preclinical groups, and some of them were correlated to the electrophysiological features and
expanded CAG repeats.

These electrophysiological and morphological features widen the prodromal phenotype of
SCAZ2, and offer new clues about the role of ATXN2 mutations for muscle atrophy, neuronal
energy balance and lipid metabolism.

Resumen:

Se realizé un estudio transversal con el objetivo de cuantificar las alteraciones electrofisiologi-
cas de los nervios facialy trigémino y determinar su correlacion con las anomalias de la mor-
fologia facial y el nimero de repeticiones de CAG en la Ataxia Espinocerebelosa Tipo 2
(SCA2). Se evaluaron 90 pacientes SCA2 y 41 portadores preclinicos de mutacién junto con
100 sujetos sanos como controles, pareados por sexo, edad y tipo facial a través de estudios
de conduccién nerviosa motora periférica del nervio facial, reflejo de parpadeo (BR) y reflejo T
mentoniano (reflejo mandibular). Para el analisis de las caracteristicas de la morfologia facial
se determind el tipo facial mediante el indice facial morfologico estandarizado y mediciones a
partir de tres planos distintos sobre fotografias. Los pacientes mostraron una prolongacion
significativa de la latencia y la duracién y una reduccioén de la amplitud del potencial motor del
facial. El reflejo mandibular revel6 prolongacion de la latencia y disminucion de la amplitud asi
como prolongacion del componente R2 bilateral del BR. Los portadores preclinicos mostraron
duracién prolongada del potencial del nervio facial, del reflejo mandibular y de la latencia del
componente R2 bilateral del BR. Se obtuvieron alteraciones morfoldgicas faciales sobre los
musculos periorales, periorbitarios y maseterinos en ambos grupos, y algunas de ellas corre-
lacionaron con las hallazgos electrofisioldgicos y el nimero de repeticiones de CAG.

Estas caracteristicas electrofisiolégicas y morfolégicas amplian el fenotipo prodrémico de
SCA2 y ofrecen nuevas pistas sobre el papel de la mutacion ATXN2 en la atrofia muscular, el
equilibrio energético neuronal y el metabolismo lipidic
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Introduction

Spinocerebellar Ataxia type 2 (SCA2) is an auto-
somal dominant cerebellar ataxia caused by CAG
repeat expansions in the ATXN2 gene on chromo-
some 12q 8 |t is characterized by several core
symptoms including a progressive cerebellar ataxia
with dysarthria, slowing of horizontal saccades in
more than 90% of cases, peripheral neuropathy,
dysphagia, olfactory deterioration, autonomic ab-
normalities, sleep disturbances and co%nitive dys-
function leading to reduced survival " In Cuba,
there are about 578 living SCA2 patients from 163
families and 7,200 asymptomatic at-risk individuals,
representing an estimated ATXN2 mutation preva-
lence of nearly 28.5 cases per 100 000 inhabitants
in the whole country. SCA2 represents 87% of all
SCA subtypes in Cuba. In Holguin province, the
prevalence rate is about 40.18 cases per 100 000
inhabitants, distributed in ten municipalities of the
province. This topographic location gives unique
characteristics to the disease in our country and is
Eﬂjg)posed to be considered a founder gene effect

Although most phenotypical features of SCAZ2
have been characterized thoroughly with clinical,
electrophysiological and neuropathological approa-
ches 7+ 81012 141731 40 prominent affection of the
cranio-cervical area during the preclinical and early
disease stages deserve special attention, particu-
larly the morphological alterations of the face. It
has been known for some time that SCA2 and
SCA3 patients within the first years of disease ap-
pear distracted due to their characteristic belated
gaze reaction, that they show fasciculation-like
movements in a cranio-cervical distribution and
seem to be frightened or have a mask-like face.
This is due to additional lid retraction, probably a
product of subcutaneous fat loss, autonomic patho-
. . 3, 19,32-34
logy and cranial nerve degeneration . Some
parents of affected individuals have reported that
they recognize the onset of pathology among their
offspring first through the changes of facial
morphology. However, there is no objective quanti-
tative characterization of facial alterations and their
correlation with clinical and molecular variables so
far.

Material and Methods

Here we performed a cross-sectional assessment
of facial alterations by neurophysiological studies
and morphological measurements and in 90 SCA2
patients (37 female and 53 male subjects), 41 pre-
clinical carriers (28 female and 13 male) and 100
healthy subjects (60 female, 40 male) as controls.

Inclusion criteria for SCA2 patients were: i) age
between 15 and 65 years old, ii) positive molecular
diagnosis of SCA2 mutation and iii) presence of
definite cerebellar syndrome. In the case of precli-
nical carriers, the absence of definite cerebellar
syndrome was assumed as third inclusion criteria.
The control group was selected following these
criteria: i) absence of cerebellar manifestations by
exhaustive neurological examination, ii) absence of
ataxia or other related diseases in the family histo-
ry, and iii) age, gender and facial type matching
with patients and preclinical carriers.

Exclusion criteria for all participants were: chronic
alcohol abuse or use of CNS- depressant drugs,
psychiatric disorders and patients with other disea-
ses affecting the nervous system such as hypothy-
roidism, diabetes, hypertension and others. Also,
subjects with history of facial trauma were not in-
cluded.

The study protocol was approved by the ethical
standards of the committee on human experimen-
tation of the Centre for Research and Rehabilitation
of Hereditary Ataxias and was in agreement with
the Helsinki declaration. All participants gave their
written informed consent prior to the experiments

Neurological assessments

All subjects underwent a complete neurological
examination and the International Cooperative
Ataxia Rating Scale (ICARSS) to assess the severity
of the cerebellar syndrome >

Neurophysiological studies

Neurophysiological evaluations were also perfor-
med in all enrolled subjects and consisted in facial
motor nerve conduction, blink reflex (BR) and
mandibular reflex (jaw jerk, JJ) studies, which were
conducted using standardized protocols % by a
researcher blinded to the experimental group of
each individual.

Facial morphological measures

As previously described, human faces show con-
siderable variance of height and other features in
comparison to facial width being constant ¥ There-
fore, facial morphology analyses were conducted in
41 SCAZ2 patients, 41 preclinical carriers and 41
sex-, age- and facial type- matched controls. In all
groups, the gender distribution was 28 females/12
males. Facial measures were conducted to classify
the facial type and to quantify the morphological
alterations. The determination of the facial type
was performed by direct measures with a cranio
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. . . . 38.
meter using a morphologic facial index Accor-

dingly, three facial types were defined: i) Leptopro-
sopo or long face (index [pengthwidth. >104), Me-
soprosopo or intermediate face (index 97-104) and
Euriprosopo or wide face (index < 97).

Frontal and right view photography to each subject
were taken, with Kodak DC290 Zoom digital came-
ra (November 1999, Canada), with head orientation
in Frankfort plane parallel to the floor and 1m focal
length.

Measures to quantify the facial alterations were
performed indirectly on frontal and lateral right view
pictures using Adobe Photoshop program version
7. Measures were assessed using the following
standard landmarks and lines as references:
Frankfurt (FP), Mid Sagittal (MSP) and commissu-
ral (CP) planes for frontal views and FP, anterior
frontal (Izard) and later frontal (Simon) planes for
lateral right views (Fig. 1). For the frontal views the
measures were assessed bilaterally and consisted
in:

Q) Distance from MSP to internal eye angle
(MSP-IEA).

2 Distance from MSP to external eye angle
(MSP-EEA)

3 Distance from MSP to the more depressed
point of the cheek (MSP-DPC)

()] Distance from MSP to the labial commissu-
re of both sides in the CP (MSP-LC)

(5) Distance from FP to labial commissure
(perpendicular) (FP-LC)

(6) Distance from FP to internal eye angle (FP-
IEA)

@) Distance from FP to external eye angle
(FP-EEA)

In the lateral right views measures were:

@ Distance from FP to labial commissure
(perpendicular) (FP-LC),

2 Distance from Simon plane to labial com-
missure (SP-LC),

3 Distance from lzard plane to the more de-
pressed point of the upper eyelid (IP-DPUE),

@ Distance from lzard plane to the more de-

pressed point of the lower eyelid (IP-DPLE).

All morphological measures were conducted by a
researcher blinded to the experimental group of
each individual

CAG repeat quantification

The ATXN2 CAG repeat length was assessed by
PCR amplification followed by polyacrylamide gel
electrophoresis %9

Lateral right view pictures, to quantify the facial
alterations.

58
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Figure 3. Correlation between CAG repeat length
and the morphometric distance FP-LCR.

Statistical Analysis

Collected information from this study was entered
into a data file using the Statistic for Windows (v
6.1, 2003, USA) computer software. Scatter plots
were obtained to evaluate the data and to confirm
the presence of a normal distribution before the
application of parametric statistics.Descriptive sta-
tistics of the studied variables, analyses of uni-
variant variance, and Spearman’s correlation tests
between electrophysiological, morphologic and
molecular variables were performed.

Results
General characteristics of study population

All patients had clinical and molecular diagnosis of
SCA2, with age ranging between 16 to 60 years
(Mean = 39.9 years; SD: 11.41), whereas age at
onset varied from 8 to 60 years (Mean = 26.7
years; SD: 9.86). Disease duration was between 1
to 42 years (Mean=13.25; SD: 7.61); ICARS score
mean was 50.06 (SD: 17.32) and varied from 5.88
to 92 points. Pathological CAG repeat lengths co-
vered sizes from 34 to 53 (Mean=40.58; SD: 3.37).
Normal alleles ranged between 19 and 33 CAG
(Mean=22.08; SD: 1.31).

Preclinical carriers group had mean age of 36.7
years (SD: 10.27), ranging from 19 to 62 years.
Pathological CAG repeat length varied between
sizes 32 and 42 (Mean=36.68; SD: 2.47) and nor-
mal alleles mean was at 22.74 (SD: 2.33).

Mean age of the control group was 34.02 years
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Neurophysiological findings

Findings of the mean comparison tests for neurop-
hysiological assessments are shown in Table 1.
The study of the facial (F) motor nerve conduction
revealed a significant prolongation of latency
(p=0.000) and duration (p=0.000) of the potential
as well as a significant (p=0.029) decrease of the
amplitude in SCA2 patients compared to controls.
There was also a significant prolongation of dura-
tion (p=0.004) of the potential in preclinical muta-
tion carriers (Table 1).

stage and it’s progressing to axonal damage on
manifest SCA2 subjects.

Facial morphometric analyses

Given that the early vulnerability of cranial nerves
will also result in tissue atrophy over time, quantita-
tive morphological assessments of facial features
were attempted by standardized digital procedures.
Consistent with the literature, the mesoprosopo
facial type was most common among all groups.

Relevant alterations of facial morphology in SCA2
patients were located (see Fig. 2) at linear distan-

Table 1. Mean comparison of neurophysiological variables in SCA2 patients, preclinical mutation

carriers and control groups.

\I\ClaeiibfssD Patients Control Preclinical carriers ~ Control

Latency F (ms)  306% 057 264 0.49 282+ 035"  264% 0.05
Duration F (ms) 1235 3.55 71042+ 3.62 1287+ 379~ 1064+ 3.16
ampliude F my) 182 % 078 T 212+ 109 196+ 062™ 228+ 180
Latency 33 (ms)  10.35 % 5.60 T B73% 1.05 814+ 216 585+ 0.97
Amplitude J (my) 051 % 036 T 1261+ 106 151+ 216" 122+ 0.41
R2 Ipsi. BR (ms)  5/63% 5.58 T 32381+ 338 3431+ 5017 3212+ 3.30
R2 Contra. BR 3962+ 663 33.27+ 358 3521+ 541 3267+ 3.34

(ms)

F: facial; JJ: jaw jerk; BR: Blink reflex. Lat.: Latency; Ipsi: Ipsilateral; Contra: Contralateral. ns: next to the mean
(SD) value represents no statistical differences (p>0.05); * means statistical difference (p<0.05); ** means higher
statistical difference (p<0.005) and *** means highest statistical difference (p<0.0005).

In the jaw jerk (JJ) study, an increment of latency
values (p=0.000) with a decrease of the amplitude
(p=0.000) was observed in patients, whereas in the
preclinical carriers only the prolongation of latency
(p=0.000) was observed (Table 1).

Blink reflex (BR) alterations mainly consisted in the
prolongation (p=0.000) of the ipsilateral and contra-
lateral latency of the R2 component in SCA2 pa-
tients and preclinical mutation carriers compared to
the control group (p=0.020 and p=0.011, respecti-
vely) (Table 1). These findings confirm the early
demyelination of cranial nerves at the preclinical

ces that point to a depression of the cheek (MSP-
DPCL; MSP-DPCR) (p=0.000) and eyelids atrophy
(IP-DPUE; IP-DPLE) (p=0.022 and p=0.040, res-
pectively). Importantly, the alterations located at
distances pointing to a decline of labial commissu-
res (FP-LCL; FP-LCR) were significant not only in
SCA2 patients (p=0.016 and p=0.018, respecti-
vely), but already in the preclinical carriers
(p=0.017 and p=0.013, respectively) (Table 2).
These results represent the first morphometric
identification of SCA2 facial shape anomalies and
demonstrate the preferential affection of lip
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facial type subjects. A: frontal view of a 39-years-old SCA2 patient; B: lateral right view of same SCA2
patient; C: frontal view of preclinical 34-years-old mutations carrier; D, E and F: frontal and lateral views
of a healthy subject aged 34 years, as a comparison to the facial alterations above, which are illustrated
by arrows in each case. (All subjects gave the consent to publish their pictures)

Table 2. Mean comparison of facial morphological measurements in SCA2 patients, preclinical carriers

and control individuals

Variables (mm)

Mean + SD Patients Controls Preclinical carriers  Controls

MSP-DPC, 41.67 + 4.67 46.32 +5.13 46.51 + 4.64 ™ 46.08 + 4.86
MSP-DPCg 41.81 +3.89 46.24 + 4.76 45.42 + 529" 45.88+ 4.51
MSP-LC, 22.09 + 2.73 " 23.41 + 2.04 23.0L+2.76"™ 23.41 + 2.17
MSP-LCr 22.46 +2.48 23.75 + 2.26 23.01 2.46"™ 24.04 + 2.27
FP-LC_ 47.59 + 4.94 " 46.64 + 5.12 49.41 +5.02° 46.65 + 5.13
FP-LCg 47.22+ 490" 46.43 + 4.99 49.23 + 4.86 46.43 + 4.99
IP-DPUE 14.05 + 3.80 12.21 +3.24 11.81 +3.61 "™ 12.56 + 3.14
IP-DPUE 16.48 +4.07 15.22 + 3.32 15.62 + 3.54 ™ 15.27 + 3.30

Morphological measurements on soft tissue. ns: next to the mean (SD) value represents no statistical differences
(p>0.05); * means statistical difference (p<0.05); ** means higher statistical difference (p<0.005) and *** means
highest statistical difference (p<0.0005).

MSP-DPCL/MSP-DPCR: Midsagittal plane distance to the most depressed left/right cheek point; MSP-LCL/ MSP-
LCR: Midsagittal plane distance to left/right labial commissure; FP-LCL/FP-LCR: Frankfurt plane distance to
left/right labial commissure and IP-DPUE/IP-DPLE: Izard plane distance to the most depressed upper/lower eyelid
point.
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commissure measures during the preclinical stage
of SCA2.

Factorial ANOVAs using facial measures as de-
pendent variable and the group (patients Vs. pre-
clinical carriers) and facial types (Mesoprosopo,
Leptoprosopo and Euriprosopo) as factors, showed
no significant interaction between the group and
the facial type for none facial measure (Table 3).

Genotype-phenotype correlation analyses

area. The distance pointing to a decline of labial
commissures of both sides showed positive corre-
lations with the duration of facial potential (FP-LCL
p=0.024; FP-LCR p=0.014) in SCA2 patients

(Ta ble 4A), suggesting that the pathology of the
facial nerve is mirrored by the position of labial
angles. The most depressed point of the superior
and inferior eyelid showed significant positive co-
rrelations with ipsilateral (IP-DPUE p=0.027; IP-
DPLE p=0.005) and contralateral R2 components

Table 3. Factorial ANOVAs findings for the assessment of the group x facial types interaction effect on

morphometric variables

Variables (mm) F
MSP-DPC_ 0.916
MSP-DPCgr 0.715
MSP-LC, 0.185
MSP-LCgr 0.206
FP-LC, 0.121
FP-LCr 0.004
IP-DPUE 10.48
IP-DPLE 10.778

p

0.405
0.493
0.831
0.814
0.886
0.996
0.234
0.176

MSP-DPCL/MSP-DPCR: Midsagittal plane distance to the most depressed left/right cheek point; MSP-LCL/ MSP-
LCR: Midsagittal plane distance to left/right labial commissure; FP-LCL/FP-LCR: Frankfurt plane distance to
left/right labial commissure and IP-DPUE/IP-DPLE: Izard plane distance to the most depressed upper/lower

eyelid point

To evaluate if the electrophysiological and mor
phometric findings correlate with disease severity
as represented by the ATXN2 CAG repeat length,
and to identify the features that are particularly
susceptible even at mildest stages of SCA2, we
performed genotype-phenotype and electrophysi-
logy-morphology association analyses. In SCA2
patients, Spearman’s correlation tests revealed

that the CAG repeat length correlated positively
with the electrophysiological latency of the facial
motor nerve (r=0.316; p=0.016) and with the
morphometric distance between Frankfurt plane to
labial commissure (r=0.439; p=0.010) (Fig. 3).The
morphometric measures that point to a sinking of
the cheek (MSP-DPCL; MSP-DPCR) were inverse-
ly correlated to the mandibular reflex latency
(p=0.049 and p=0.039 respectively) and directly
correlated to the mandibular reflex amplitude
(p=0.003 and p=0.017, respectively) in SCA2 pa-
tients (Table 4A), suggesting that this morphome-
tric feature might reflect atrophy of the masseteric

of the BR (IP-DPUE p=0.045; IP-DPLE p=0.006) in
SCA2 patients (Table 4A). In addition, the same
morphometric features exhibited significant positive
correlations with the facial motor nerve latency (IP-
DPUE: p=0.045; IP-DPUE: p=0.034) in SCA2 pa-
tients (Table 4A), suggesting that the loss of myelin
in the facial motor nerve is mirrored by the enop-
hthalmos.

In the preclinical mutation carriers the distance
between mid-sagittal plane to left labial corner was
negatively correlated with the JJ reflex latency
(MSP-LCL: p=0.024) and latency of the facial mo-
tor (MSP-LCR: p=0,008; MSP-LCL: p=0.000). The
latency of the facial motor nerve also had a signifi-
cant direct correlation with the measure that reflec-
ted the vertical decline of lip corners (FP-LCL:
p=0.045; FP-LCR: p=0.046) (Table 4B). Thus, in
preclinical carriers the demyelination of the facial
motor nerve as well as lip depression were particu-
larly conspicuous markers of incipient SCA2.
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Discussion

In the present paper, we presented the first study
assessing the neurophysiological abnormalities of
cranial nerves and their relationship with facial
morphological alterations and expanded CAG re-
peats in SCA2. The main findings were the presen-
ce of electrophysiological signs of myelin and axon
damage within the trigeminal and facial nerves in
patients and myelin lesion, predominantly in small
caliber facial’s fibres on preclinical mutation ca-
rriers, which correlated well with the facial morpho-
logy measures and the mutation size.

Early in the disease course, before ataxia onset,
the prolonged latency of facial motor nerve, jaw
jerk and blink reflex suggest the facial nerve invol-
vement ***® The shinking of cheek is related to the
muscle atrophy and /or loss of fat within the tissue.
Axonal damage of cranial nerves appears later
during the disease progression.

The strong involvement of cranial nerves in SCA2
has been substantiated previously by histological
data. Gierga et al, *% observed significant cell loss
and astrogliosis in all studied cases as well as
atrophy and myelin loss of associated fibres in
most of them. The preferential affection of periphe-
ral nerves such as the facial and trigeminal nerve
during the preclinical period is in excellent agree-
ment with other studies of prodromal SCA2, which
showed electrophysiological alterations in a pattern
of peripheral neuropathy with central pathway da-
mage and neuronal cell loss to depend directly on
the CAG repeat expansion size of the ATXN2 gene
9. 184058, e physiological function of the Ataxin-2
protein and its highly conserved orthologues until
yeast and plants 5962 appears to be the recruitment
of fat stores, amino acid reserves in the muscle
mass, and glycogen from liver during times of bio-
energetics deficit 66, probably through its in-
fluence on the endocytosis machinery and on
mTOR pathway growth signalling 7713 1o adapt
cells to hunger periods, Ataxin-2 performs RNA
processing tasks at stress granules and influences
mRNA translation "+, selectively for mitochondrial
precursor proteins that are involved in the
breakdown of fatty acids, amino acids and pyruvate
83,7779 |ndeed, the preferential effects of Ataxin-2
mutations on RNA processing and on mitochondrial
factors may become helpful in the diagnosis and
progression analysis of SCA2 patients via blood
sample RNA sequencing 8081 thus explain a loss
of fat tissue and muscle mass may occur through
the immobility or cranial neuropathy at late stages
of SCA2.

The loss of retroorbital soft tissue and the altered
facial expression indeed are known as a very early

feature of SCA2. This is probably due to a loss of
fat volume and of muscle mass, given that facial
shape in profile photos is known to reflect total fat
proportion and to correlate reasonably well with
body mass index, 82 rather than correlating to ske-
letal parameters [83]8. It shows obvious changes
with increasing age * Previous investigations of
patients with enophthalmos demonstrated that the
retro-orbital fat has strong similarities with the buc-
cal fat pad, regarding their admixture with mast
cells/endothelial cells/collagen, while truncal adipo-
se tissue is significantly different ®°. This may ex-
plain the preferential affection of the face at a
SCAZ2 stage when the body weight is still normal.
The results from this study offer a novel tool for the
neurophysiological follow up and evaluation of
SCA2 patients, allowing to determine the ideal
moment for starting a preventive therapy such as
hypercaloric high-carbohydrate diets, which were
recently reported as promising in the treatment of
ALS patients %°. Such a neuroprotective approach
might delay the age at onset or slowing disease
progression, but this would be difficult to demons-
trate convincingly, unless objective quantitative
measurements of disease endophenotypes and
electrophysiological deficits can be assessed as
well.

This pioneer study can be expanded to an analysis
of 3D stereoPhotogrammetry and geometric
morphometrics 8790 as well as to a follow-up longi-
tudinal evaluation, in order to assess the progres-
sion of these abnormalities over years within indivi-
duals.

As conclusion, these electrophysiological and
morphological features offer new insights into the
prodromal phenotype of SCA2, while at the same
time giving new clues about the role of ATXN2 for
muscle atrophy, neuronal energy balance and lipid
metabolism. In a clinical setting, our findings could
help to the early diagnosis and the design of future
therapeutic interventions.
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